首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. J. F. Bowling 《Planta》1966,69(4):377-382
Summary The electrical potential difference across exuding roots of Helianthus annuus in two strengths of complete culture solution was measured. The determination of the concentration of the major nutrient ions in the outside solution and the xylem sap enabled the Nernst potential for each ion to be calculated. A comparison of the measured and calculated potentials indicated that the anions NO3, SO4, H2PO4 and HPO4 were actively transported into the sap against the electrochemical potential gradient. The cations Ca and Mg, on the other hand, appeared to move passively into the sap. The behaviour of potassium depended on its concentration in the medium. With a relatively low external concentration (0.75 mM) it appeared to be actively tansported into the sap, whilst at higher outside concentrations (7.5 mM) it was apparently moving passively into the xylem down the electrochemical potential gradient. The possibility of potassium being pumped out of the sap with relatively high external concentrations is discussed.  相似文献   

2.
Betty Klepper  H. Greenway 《Planta》1968,80(2):142-146
Summary Tomato plants were treated for one hour in nutrient solutions at-10.4 atm. Roots were excised, transferred to solutions at-0.4 atm and put into a pressure chamber to induce rates of water flow similar to those in transpiring plants.For roots continuously at-0.4 atm, the xylem sap had much higher phosphorus concentrations than the external solution, which contained 6 p.p.m. phosphorus.Roots previously treated at-10.4 atm had much lower concentrations in the sylem sap than in the external solution and the amount of phosphorus transported and the water flow were linearly related. This phosphorus transport was due to passive movement as shown by measuring transport of both 32P and 14C mannitol. Thus transport to the xylem mediated by active processes was abolished even though uptake by the roots remained substantial. These results obtained after plasmolysis support the view that radial transport to the xylem includes uptake into and movement through the symplast.  相似文献   

3.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

4.
Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids—mainly oxygenated compounds—in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.  相似文献   

5.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

6.
The response of halophyte arrowleaf saltbush (Atriplex triangularis Willd) plants to a gradient of salt stress were investigated with hydroponically cultured seedlings. Under salt stress, both the Na+ uptake into root xylem and negative pressures in xylem vessels increased with the elevation of salinity (up to 500 mol/m3) in the root environment. However, the increment in negative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions, even when the osmotic potential of xylem sap is taken into consideration. The total water potential of xylem sap in arrowleaf saltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low, but a progressively increased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observed when the salinity in the root environment was enhanced. The maximum gap was 1.4 MPa at a salinity level of 500 mol/m3 without apparent dehydration of the tested plants. This discrepancy could not be explained with the current theories in plant physiology. The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress was and accompanied by an increase in the Na+ uptake into xylem sap. However, the relative Na+ in xylem exudates based on the corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease. The results showed that the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaCl into xylem when the radial reflection coefficient of the root was considerably small; and that arrowleaf saltbush could use small xylem pressures to counterbalance the salt stresses, either with the uptake of large amounts of salt, or with the development of xylem pressures dangerously negative. This strategy could be one of the mechanisms behind the high resistance of arrowleaf saltbush plants to salt stress.  相似文献   

7.
Metabolomic and proteomic changes in the xylem sap of maize under drought   总被引:1,自引:0,他引:1  
Plants produce compounds in roots that are transported to shoots via the xylem sap. Some of these compounds are vital for signalling and adaptation to environmental stress such as drought. In this study, we screened the xylem sap using mass spectrometry to quantify the changes in new and previously identified sap constituents under extended drought. We detected and quantified the changes in the concentration of 31 compounds present in the xylem sap under progressively increasing drought stress. We found changes in the hormones abscisic acid (ABA) and cytokinin, and the presence of high concentrations of the aromatic cytokinin 6-benzylaminopurine (BAP). Several phenylpropanoid compounds (coumaric, caffeic and ferulic acids) were found in xylem sap. The concentrations of some of these phenylpropanoid compounds changed under drought. In parallel, an analysis of the xylem sap proteome was conducted. We found a higher abundance of cationic peroxidases, which with the increase in phenylpropanoids may lead to a reduction in lignin biosynthesis in the xylem vessels and could induce cell wall stiffening. The application of new methodologies provides insights into the range of compounds in sap and how alterations in composition may lead to changes in development and signalling during adaptation to drought.  相似文献   

8.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

9.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

10.
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C. sinensis L.), 27Al-nuclear magnetic resonance and 19F NMR spectroscopy were used to analyze xylem sap.The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible.There were two signals in the 27Al NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at −1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at −1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at −122 ppm in the 19F NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F.These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants.  相似文献   

11.
Complementary laboratory and field experiments showed that theinternal transport of carbon dioxide (CO2) in the xylemof trees is an important pathway for carbon movement. Carbon dioxidereleased by respiration dissolves in sap and moves upward in thetranspirational stream. The concentration of CO2 in xylemsap can be up to three orders of magnitude greater than that foundin the atmosphere. In the present experiments, diffusion outwardof a portion of xylem‐transported CO2 caused a substantialoverestimation of the apparent rate of stem and branch respiration.Rates of CO2 efflux were linearly related to sap CO2 concentration.Direct manipulations of xylem sap CO2 concentration producedrapid and reversible changes in CO2 efflux from stemsand branches, in some cases quadrupling the rate of efflux. Theseresults demonstrated that apparent rates of stem and branch respirationof trees are in large part a by‐product of the rate of CO2 diffusionfrom xylem sap.  相似文献   

12.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

13.
Salt balance of leaves of the mangrove Avicennia marina   总被引:6,自引:0,他引:6  
The contribution of each of the salt-transporting processes to the NaCl balance of the leaves of the salt-recreting mangrove Avicennia marina (Forssk.) Vierh. was quantitatively investigated. Transpiration rates, xylem sap concentration, leaf salt content, recretion rates and rates of salt retranslocation out of the leaves were continuously monitored during three day periods and the salt fluxes in and out of the leaves were calculated. The results indicated that salt filtration by the roots is by far the most important salt-rejecting mechanism, preventing some 80% of the salt which is carried towards the root surface by the transpiration stream, from entering the shoot. Out of the remaining quantity of salts which enter the root xylem and reach the leaves, only 40% is removed by the salt-recreting glands.  相似文献   

14.
Abstract Absorption of copper and manganese by sunflower roots from solution cultures of varying composition was followed by measuring the concentrations of the metals appearing in whole roots, root cell sap and xylem exudate. Total copper in the fibrous roots was linearly related to the concentration of copper in the external solution but the concentration of copper released to the xylem exudate was buffered somewhat against the changes made externally. No such buffering was observed for managenese. A copper-sensitive electrode, responsive only to free cupric ions was used in conjunction with total copper analysis by atomic absorption spectrophotometry to show that little of the copper (usually < 1%) existed as a free ion in any phase of the system. Copper in the xylem exudate may be strongly complexed. An electron paramagnetic resonance spectrum of the xylem exudate indicated that manganese probably was a free divalent ion. Calculation of the electrochemical potential gradient for free cupric ions showed that no special metabolically-linked mechanism need be postulated to account for absorption of copper (or manganese) other than that necessary to maintain the transmembrane potential.  相似文献   

15.
In higher plants, the xylem vessels functionally connect the roots with the above-ground organs. The xylem sap transports various organic compounds, such as proteins and amino acids. We examined drought and rewatering-inducible changes in the amino acid composition of root xylem sap collected from Cucurbita maxima roots. The major free amino acids in C . maxima root xylem sap were methylglycine (MeGly; sarcosine) and glutamine (Gln), but MeGly was not detected in the xylem sap of cucumber. MeGly is an intermediate compound in the metabolism of trimethylglycine (TMG; betaine), but its physiological effects in plants are unknown. Drought and rewatering treatment resulted in an increase in the concentration of MeGly in root xylem sap to 2.5 m M . After flowering, the MeGly concentration in the xylem sap dropped significantly, whereas the concentration of Gln decreased only after fruit ripening. One milli molar MeGly inhibited the formation of adventitious roots and their elongation in C . maxima , but glycine, dimethylglycine, or TMG had no effect. Similar effects and the inhibition of stem elongation were observed in shoot cuttings of cucumber and Phaseolus angularis . These observations seem to imply a possible involvement of xylem sap MeGly in the physiological responses of C . maxima plants to drought stress.  相似文献   

16.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

17.
The previous demonstration that the large late metaxylem vessels of field-grown maize ( Zea mays L. cv. Rosella) roots do not lose their crosswalls until they are 20–30 cm from the tip, and that the presence of a soil sheath outside the root was indicative of immature vessels within, greatly strengthened the hypothesis that ion accumulation into these roots was by uptake into living xylem element vacuoles. Proposals that salt movement into the xylem was by leakage or secretion into dead vessels became much less plausible. Potassium concentration in the vacuoles of late metaxylem elements was measured by X-ray microanalysis in unetched fracture faces of bulk, frozen-hydrated pieces of sheathed roots, and found to be in the range 150–400 m M . Potassium concentration in open vessels of bare roots, measured both with the microprobe and by spectrophotometry of aspirated sap, was in the range of 5 to 25 m M . It is concluded that uptake of potassium (and possibly other ions) is into living xylem elements, and that its release to the transpiration stream occurs by the breakdown of their crosswalls and the addition of their vacuoles to the solution in the vessels above.  相似文献   

18.
We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.  相似文献   

19.
Soil solution, xylem sap and needles of mature trees were sampled in three spruce stands over one vegetation period and analysed for major cations. Investigations of nutrient distribution between these three pools and evaluations of seasonal dynamics give the following results: The highest nutrient concentrations in the xylem sap occur at the time of bud break and become gradually lower during the vegetation period. The trees show similar trends of xylem sap concentrations with time for potassium, calcium and magnesium regardless of the nutritional status of the plots. No coupling of xylem sap to soil solution composition can be observed in spite of a high variability of soil solution chemistry in time. The major cations in the current needles exhibit a significantly different trend with time. No time-based correlations for nutrient contents could be found for the needles from the previous year.Despite mobilisation of storage pools in the deficient stand, trees are not able to increase the Ca and Mg contents in the needles up to the level of the other stands. Potassium could be retranslocated in sufficient extent for nutrition of current needles. Due to seasonal variability and dependence upon internal processes, such as retranslocation and mobilisation of nutrients, xylem sap does not seem to be a good tool for the estimation of the nutritional status of forest sites.It was concluded that only minor transport into new foliage via xylem sap will proceed after nutrient flush during the bud break and the nutrient content in the new biomass will be governed by dilution due to biomass growth or by nutrient transport by other means than xylem sap.  相似文献   

20.
Nitrogen form has been shown to affect Zn uptake, translocation and storage in the Zn-hyperaccumulating plant Noccaea caerulescens but the biochemical processes are not fully understood. Organic acids and amino acids have been implicated in Zn transport and storage. This study aimed to examine the effect of N form on concentrations of organic acids and amino acids and how these metabolites correlated with Zn hyperaccumulation. Plants were grown in nutrient solution with NO3, NH4NO3 or NH4+, supplied with 50 or 300 μM Zn, and buffered at either pH 4.5 or 6.5. The metabolomic profile was determined by gas chromatography mass spectroscopy. The concentration of Zn in shoots, xylem and roots was greatest for the NO3, pH 6.5 and 300 μM Zn treatments. For all N forms, the lower growth-medium pH raised xylem sap pH but had no influence on Zn concentration or exudation rate of the xylem sap. Nitrate enhanced organic acid production while NH4+ increased amino acid production. Organic acids in the xylem were more responsive to changes in growth-medium pH than N form, and did not correlate with Zn concentration in shoots, roots or xylem. Serine might be directly involved in Zn hyperaccumulation. Phosphoric acid was associated with reduced Zn accumulation in the shoots. Malic acid was not detected in the shoots but responded to cation uptake more than to Zn specifically in the roots. Citric acid responded to cation uptake more than to Zn specifically in the shoots but did not correlate with Zn concentration in the roots or the xylem sap, or any other cations in the roots. In conclusion, organic acids in N. caerulescens are not specifically involved in Zn hyperaccumulation but are involved in regulating pH in the xylem and cation–anion balance in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号