首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the intermediary metabolism of selenium-deficient mice   总被引:1,自引:0,他引:1  
Male albino mice were pair-fed a torula yeast-based selenium-deficient (Se-) diet containing 10 ppb selenium for 4 months, while a control group (Se+) received a similar diet supplemented with 330 ppb selenium as Na2SeO3. In addition to previously observed modulations of drug-metabolizing enzymes (Reiter, R. and Wendel, A. (1985) Biochem. Pharmacol. 34, 2287-2290), an increase of 6-phosphogluconate dehydrogenase activity and succinate dehydrogenase activity in liver by about 60% was found. In vivo, an increased 14CO2 exhalation from a tracer dose of glucose either labeled in the C-1- or C-6 position was observed in selenium-deficient mice. However, no difference in the total CO2 exhalation of Se(-)- as compared to Se+-mice was detectable. In line with the assumption that Se(-)-mice have an increased glucose turnover, Se(-)-mice exhibited a greater glucose tolerance when treated with an oral glucose load of 2.5 mg glucose/kg body weight. Also, the Se(-)-mice had a lower blood glucose level as compared to Se+-controls (89 +/- 3 versus 110 +/- 12 mg glucose/100 ml blood). Further in vitro experiments with red blood cells from Se(-)-mice showed that erythrocytes did not contribute to an increased CO2 formation from glucose via the pentose phosphate shunt. No significant differences between Se(-)- and Se+-animals were found in the profile of urinary metabolites, including ketone bodies and nitrogen excretion. These findings suggest a hitherto unknown involvement of selenium in specific regulatory sites of intermediary metabolism.  相似文献   

2.
The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na(2)SeO(4)) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.  相似文献   

3.
Selenium deficiency causes oxidative stress and impairs steroidogenesis in vitro. Leptin is closely related to the hypothalamo-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis at the central level while corticosteroids have been shown to stimulate leptin secretion in most studies. We hypothesized that oxidative stress impairs adrenal steroidogenesis and decreases leptin production in vivo. The goal of this study was to investigate in rats the effects of selenium deficiency and oxidative stress on adrenal function and on leptin concentrations. Weanling rats were fed a selenium-deficient (Se-) or selenium-sufficient (Se+) diet for 4-10 weeks. Selenium deficiency caused a marked decrease in liver (> or = 99%) and adrenal (> or = 81%) glutathione peroxidase (GPx) activities. Selenium deficiency did not affect basal and short-term adrenocorticotropin (ACTH) stimulated corticosterone or leptin concentrations. In contrast, after long-term ACTH stimulation, selenium deficiency caused a doubling in adrenal isoprostane content and blunted the increase in corticosterone and leptin concentrations observed in Se+ animals. Plasma leptin concentrations were 50% lower in Se- compared to Se+ animals following long-term ACTH. Our results suggest that oxidative stress causes a decrease in circulating corticosterone in response to ACTH, and, as a consequence, a decrease in plasma leptin concentrations.  相似文献   

4.
Antioxidant enzymes and vitamins provide a defence against the damage of cells by reactive oxygen species in living systems. The effect of Cu, Se and vitamin E deficiencies on the antioxidant enzyme activities and lipid peroxide levels of chicken erythrocytes were investigated during 6 weeks of a depletion diet. CuZnSOD activity and the plasma Cu level of the Cu-deficient group which was fed a diet containing 0.2 mg Cu x kg(-1) were reduced to 62 and 71% respectively. GSH-Px activity of the Se-deficient group was decreased by 46% but by 21% in the Cu-deficient group. CAT activity values of Se- and Cu-deficient groups were increased by 28 and 10% respectively. The maximum increase of LPO levels in erythrocyte membranes was observed as 32% for the Se+E-deficient group. The LPO level of the Cu-deficient group which had decreased CuZnSOD and GSH-Px activity, was also observed to be significantly increased when compared with the controls (p < 0.05).  相似文献   

5.
A tissue uptake experiment was conducted to determine the bioavailability of rumen bacterial Selenium (Se) in mice. The donor animal was wether fed a diet containing 0.2 mg Se/kg dietary dry matter (DM). Ruminal fluid was collected 2 h postprandially. Bacterial-rich precipitate was obtained by differential centrifugation of the ruminal fluids. This was later freeze-dried and mixed in the diet to be used in feeding the mice experiment. Thirty growing female mice with a body wt (mean±SD) of 21.4±0.74 g were housed in plastic cages (5 mice/cage) and allotted equally to three dietary treatments. Diet 1 and Diet 2 were formulated based on AIN-76, except that no Se supplementation in the form of selenite was made in the former. In Diet 3, rumen bacterial matter was 20% of the diet, which gave an equivalent of 0.1 mg Se/kg dietary DM. The other two diets, Diet 1 and Diet 2, had an Se content of 0.025 and 0.1 mg/kg dietary DM, respectively. A 7-d feeding commenced after 7 d of acclimatization of the semipurified diet. Results showed that those mice fed an Se- (selenite) supplemented diet (Diet 2) had higher (P<0.05) tissue Se concentrations than those mice fed the other two diets. No statistical differences were observed on various tissue Se concentrations between Diet 1 and Diet 3, although the latter diet had higher values. Kidney and liver had the highest Se concentrations compared to the other tissues. This study concludes that bacterial Se collected from the rumen of wether is not fully available for absorption in the intestine of the mice.  相似文献   

6.
The objective of the present study was to evaluate the effect of oxidative stress induced by feeding various levels of selenium on steroidogenesis and DNA damage in mouse testes. To create various levels of oxidative stress in mice, diets with three different Se levels were fed to separate groups for 8 weeks. Group 1 animals were fed a yeast-based diet, which was considered a Se-deficient diet (0.02 ppm). Group 2 and 3 animals were fed a Sedeficient diet supplemented with 0.2 and 1 ppm Se as sodium selenite, respectively. After completion of the diet feeding, estimations were carried out, and results were compared with those of group 2. A significant decrease in Se levels was observed in group 1 animals, whereas they were greatly enhanced in group 3. Glutathione peroxidase (GSH-Px) activity was greatly reduced in both the liver and testes in group 1, whereas no significant changes were found in GSH-Px activity in group 3. Serum luteinizing hormone, follicle-stimulating hormone (FSH), and testosterone levels were reduced in group 1. Significant decreases of sperm number and motility were observed in group 1 when compared to group 2 male mice. No changes in these parameters were observed in group 3. DNA fragmentation was observed in both groups 1 and 3; however, the damage was more prevalent in group 1. The results clearly demonstrate the effect of oxidative stress generated by feeding various Se levels on the steroidogenesis and DNA fragmentation in mice testes.  相似文献   

7.
Lambs, maintained on a selenium-deficient diet supplemented with 94 atom % Na2 27SeO3, have been used as a source of 77Se-enriched erythrocyte glutathione peroxidase. After 5 months on this diet, the percentage of selenium in the enzyme derived from the supplement had reached 88%. From each monthly bleeding of two sheep, approximately 20 mg of 77Se-enriched glutathione peroxidase could be isolated in pure form. Although attempts to observe 77Se NMR signals from the native enzyme labeled with 6,6'-[77Se]diselenobis-(3-nitrobenzoic acid) failed, due to the low solubility of the enzyme, two 77Se resonances were observed after unfolding the enzyme with 8 M urea and reaction with iodoacetamide. These resonances, at 195 and 377 ppm, were from the selenoether alkylamide derivative and from protein cross-linked selenide sulfide species, respectively. Relaxation time measurements on the selenoether at 4.7 and 9.4 teslas enabled an estimate of the chemical shift anisotropy to be made. A value of less than or equal to 262 ppm was determined. Reduction of the denatured selenide sulfide species with dithiothreitol gave an observable 77Se resonance from the Se- moiety at pH 8 and from SeH at pH 4.2. The chemical form of the selenocysteine residue in the resting state enzyme most consistent with formation of the acetamide derivative and the selenide sulfide is Se- or SeH. From the magnitudes of the estimated chemical shift anisotropies, it is predicted that direct observation of selenium in the native enzyme will be feasible if the enzyme concentration can be increased to 0.25 mM tetrameric glutathione peroxidase.  相似文献   

8.
Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counterregulation of insulin signaling, and its physiological modulation depends on H2O2 and glutathione (GSH). Se via GSH peroxidases (GPxs) and its specific metabolism is involved in the removal of H2O2 and in the regulation of GSH metabolism. Recent results from animal trials and epidemiological studies with humans have shown that a high GPx1 activity or a permanent surplus of Se may promote the development of obesity and diabetes. Our nutrition physiological study with 7 x 7 growing rats was carried out to examine if PTP1B is modulated by Se supplements and, thus, may represent one trigger mediating these undesirable metabolic effects of Se. One group of rats was fed an Se-deficient diet for 8 weeks. The diets of the other six groups contained Se as selenite or selenate according to the recommendations (0.20 mg/kg diet) and at two supranutritional levels (1.00 and 2.00 mg/kg diet). All Se-supplemented animals featured a significantly higher body weight (6-14%) compared to their Se-deficient companions. Expression and activity of GPx1 in the liver of Se supplemented animals was 10- and 70-fold higher compared to Se deficiency. The detailed study of PTP1B regulation using an enzymatic assay and Western Blot analysis with an antibody against protein glutathionylation revealed that PTP1B was significantly up-regulated by both a maximization of GPx1 activity and by increasing dietary Se supply, reducing its inhibition via glutathionylation. Selenate effected a stronger PTP activation compared to selenite. In conclusion, our results suggest that the modulation of PTP1B activity may represent one plausible mechanism by which a long-term intake of Se supplements exceeding the requirements can promote the development of obesity and diabetes and needs further intensive investigation.  相似文献   

9.
The effect of sodium selenite (Se) was investigated against two-stage rat liver carcinogenesis initiated by a single intraperitoneal injection of N-nitrosodiethylamine (DEN, 200 mg kg(-1) i.p.) followed by promotion with phenobarbital (PB, 0.05%) in a basal diet. Se (4 p.p.m.) was administered per os daily throughout the entire experiment, before the initiation, or during the promotion stage. The plasma, liver (hepatoma and surrounding tissue) and kidney tissue were investigated biochemically for lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and 5'-nucleotidase. These enzyme activities were increased (p < 0.001) in plasma of hepatoma-bearing rats compared with normal control rats. The elevation of these enzyme activities in plasma was indicative of the persistent deteriorating effect of DEN in cancer-bearing animals. Aminotransferase levels were decreased in hepatoma and surrounding liver tissue, whereas lactate dehydrogenase, alkaline phosphatase and 5'-nucleotidase were increased in the cancer condition. These enzyme activities were reversed to near normal control values in animals treated with Se. It is apparent that the beneficial effect of Se is primarily exerted on the initiation phase and secondarily during the promotion stage of DEN-initiated rat liver carcinogenesis. The analysis of marker enzyme activities taken together with our previous findings clearly indicates the antitumour efficacy of sodium selenite on DEN-induced hepatoma animals.  相似文献   

10.
An assay for the determination of the newly discovered selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PH-GPx) in biological material is described. Dietary selenium deficiency and repletion was used as a tool in order to modify this enzyme activity in various mouse organs and to compare it to the activity of the 'classical' selenium-dependent glutathione peroxidase (GPx) (EC 1.11.1.9). A semipurified diet containing less than 12 ppb Se was used for depletion. Controls received this diet supplemented with 500 ppb Se in the form of Na2SeO3. The results showed that a rapid loss of GPx activity occurred in liver, kidney and lungs of selenium-deficient mice which reached undetectable levels within 130 days. In the heart, about 24% of control GPx activity was still present. In contrast, PH-GPx activity was more slowly depleted by Se deficiency and resulted in residual activities ranging from 30 to 70% in the different organs even after 250 days of depletion. In repletion experiments with a single application of 10 or 500 micrograms/kg Se, only the high dose restored either enzyme activity. The data demonstrate that the need for selenium of the two glutathione peroxidases is different. A markedly distinct organ distribution of both enzymes suggests that the heart may be the organ more sensitive to oxidative stress.  相似文献   

11.
Aflatoxin B1 (AFB1) is among the most potent naturally occurring carcinogens and classified as a group I carcinogen. Since the ingestion of aflatoxin-contaminated food is associated with several liver diseases, the aim of the present study was to evaluate the effect of 2, 20, and 200 ppb of AFB1 on DNA damage in peripheral blood lymphocytes and liver cells in Dunkin-Hartley guinea pigs. The animals were divided into four groups according to the given diet. After the treatment the lymphocytes and liver cells were isolated and DNA damage determined by Comet assay. The levels of DNA damage in lymphocytes were higher animals treated with 200 ppb of AFB1-enriched diet (P = 0.02). In the liver cells there were a relationship between the levels of DNA damage and the consumption of AFB1 in all studied groups. These results suggest that Comet assay performed on lymphocytes is a valuable genotoxic marker for high levels of exposure to AFB1 in guinea pig. Additionally our results indicate that the exposure to this toxin increases significantly and increases the level of DNA damage in liver cells, which is a key step on liver cancer development. We also suggest that the Comet assay is an useful tool for monitoring the genotoxicity of AFB1 in liver.  相似文献   

12.
13.
4 x 5 growing female rabbits (New Zealand White) with an initial live weight of 610 +/- 62 g were fed a torula yeast based semisynthetic diet low in selenium (<0.03 mg/kg diet) and containing <2 mg alpha-tocopherol per kg (group I). Group II received a vitamin E supplementation of 150 mg alpha-tocopherylacetate per kg diet, whereas for group III 0.40 mg Se as Na-selenite and for group IV both supplements were added. Selenium status and parameters of tissue damage were analyzed after 10 weeks on experiment (live weight 2,355 +/- 145 g). Selenium depletion of the Se deficient rabbits (groups I and II) was indicated by a significantly lower plasma Se content (group I: 38.3 +/- 6.23 microg Se/mL plasma, group II: 42.6 +/- 9.77, group III: 149 +/- 33.4, group IV: 126 +/- 6.45) and a significantly lower liver Se content (group I: 89.4 +/- 18.2 microg/kg fresh matter, group II: 111 +/- 26.2) as compared to the Se supplemented groups III (983 +/- 204) and IV (926 +/- 73.9). After 5 weeks on the experimental diets differences in the development of plasma glutathione peroxidase were observed. As compared to the initial status group (45.2 +/- 4.50) pGPx activity in mU/mg protein was decreased in group I (19.1 +/- 7.08), remained almost stable in the vitamin E supplemented group II (46.3 +/- 11.2) whereas an elevated enzyme activity was measured in the Se supplemented groups III (62.4 +/- 23.9) and IV (106 +/- 19.9). In the rabbit organs investigated 10 weeks of Se deficiency caused a significant loss of Se dependent cellular glutathione peroxidase activity (GPx1) of 94% (liver), 80% (kidney), 50% (heart muscle) and 60% (musculus longissimus dorsi) in comparison to Se supplemented control animals. Damage of cellular lipids and proteins in the liver was due to either Se or vitamin E deficiency. However damage was most severe under conditions of a combined Se and vitamin E deficiency. It can be concluded that the activity of plasma glutathione peroxidase is a sensitive indicator of Se deficiency in rabbits. The loss of GPx1 activity indicates the selenium depletion in various rabbit organs. Both selenium and vitamin E are essential and highly efficient antioxidants which protect rabbits against lipid and protein oxidation.  相似文献   

14.
Chicks were fed an amino acid mixture-based diet (basal diet) or one supplemented with selenium (Se, 0.2 micrograms/g as Na2SeO3) and/or vitamin E (100 micrograms/g as alpha-tocopherol). The group receiving the basal diet devoid of Se and vitamin E showed a tendency to grow slowly, but not significantly so, compared to the non-deficient control and manifested a symptom of exudative diathesis after the feeding period of 4 weeks. Supplementation of the basal diet with Se or vitamin E prevented the deficiency symptoms in the chicks. The hepatic GSH level and GSH synthesis activity were about three times as much in the Se- and vitamin E-deficient group as in the control. This was also the case for in vivo sulfur incorporation into hepatic GSH for 10 h post-injection with [35S]methionine. The increased level of GSH may partly compensate the hepatocytes for peroxidative damage.  相似文献   

15.
To determine the effect of Se status on the level of mRNA for Se-dependent glutathione peroxidase (EC 1.11.1.9), rats were fed either a Se-deficient torula yeast diet (less than 0.02 mg Se/kg diet) or a Se-adequate diet (+0.2 mg Se/kg as Na2SeO3) for greater than 135 d. Liver glutathione peroxidase activity was 0.025 for Se-deficient versus 0.615 EU/mg protein for Se-adequate rats. Total liver RNA and polyadenylated RNA were isolated and subjected to Northern blot analysis using a 700 bp DNA probe from cloned murine glutathione peroxidase. Autoradiography showed that Se-deficient liver had 7-17% of the mRNA for glutathione peroxidase present in Se-adequate liver, suggesting that Se status may regulate the level of mRNA for this selenoenzyme.  相似文献   

16.
The effect of high fat diet (HFD) on thyroid hormones (T3/T4) and protective role of selenium (Se) were studied in rats. Se levels in serum and liver decreased significantly, whereas glutathione peroxidase (GSH-Px) in liver and lipid levels (cholesterol and triglycerides) in serum increased after 1, 2 and 3 months of HFD feeding in comparison to controls in all the three Se status i.e. deficient (0.02 ppm), adequate (0.2 ppm) and excess (1 ppm) groups. Levels of T3/T4 decreased significantly on HFD feeding, as compared to respective controls in all the groups. Within the deficient group, as Se deficiency progressed, T3/T4 levels decreased after 2 and 3 months in comparison to 1 month. A significant increase was observed in T3/T4 concentration on feeding 1 ppm (excess) Se supplemented diet, in comparison to adequate group. Also, in 1 ppm Se supplemented group as the Se deposition increased i.e. after 2 and 3 months, levels of T3/T4 increased significantly. So, the present study indicates that Se supplementation up to 1 ppm normalizes the T3 and T4 concentrations or regulates the hypothyroidism induced by hyperlipidemia.  相似文献   

17.
A previous study compared the effects of folate on methyl metabolism in colon and liver of rats fed a selenium-deficient die (<3 μg Se/kg) to those of rats fed a diet containing supranutritional Se (2 mg selenite/kg). The purpose of this study was to investigate the effects of folate and adequate Se (0.2 mg/kg) on methyl metabolism in colon and liver. Weanling, Fischer-344 rats (n=8/diet) were fed diets containing 0 or 0.2 mg selenium (as selenite)/kg and 0 or 2 mg folic acid/kg in a 2×2 design. After 70 d, plasma homocysteine was increased (p<0.0001) by folate deficiency; this increase was markedly, attenuated (p<0.0001) in rats fed the selenium-deficient diet compared to those fed 0.2 mg Se/kg. The activity of hepatic glycine N-methyltransferase (GNMT), an enzyme involved in the regulation of tissue S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), was increased by folate deficiency (p<0.006) and decreased by selenium deprivation, (p<0.0003). Colon and liver SAH were highest (p<0.006) in rats fed deficient folate and adequate selenium. Although folate deficiency decreased liver SAM (p<0.001), it had no effect on colon SAM. Global DNA methylation was decreased (p<0.04) by selenium deficiency in colon but not liver; folate had no effect. Selenium, deficiency did not affect DNA methyltransferase (Dnmt) activity in liver but tended to decrease (p<0.06) the activity of the enzyme in the colon. Dietary folate did not affect liver or colon Dnmt. These results in rats fed adequate selenium are similar to previous results found in rats fed supranutritional selenium. This suggests that selenium deficiency appears to be a more important modifier of methyl metabolism than either adequate or supplemental selenium. The U.S. Department of Agriculture, Agriculture Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

18.
Evidence that type II 5'-deiodinase is not a selenoprotein.   总被引:6,自引:0,他引:6  
Brain type II 5'-iodothyronine deiodinase and liver type I 5'-iodothyronine deiodinase activities are decreased in rats fed a Se(2+)-deficient diet suggesting that both enzymes are Se(2+)-dependent proteins. Since serum thyroxine (T4) concentrations are twice normal in the Se(2+)-deficient animals, it is unclear whether the Se2+ deficiency or the increased circulating T4 account for the decrease in the brain enzyme. In order to separate these two possibilities, the effects of Se2+ on 5'-deiodinase in glial cells (type II) and LLC-PK1 cells (type I) were examined. LLC-PK1 and glial cells were grown in serum-free defined medium containing 0, 1 pM, 10 nM, and 40 nM Se2+ for 3-5 days or in medium containing 75Se2+ for 24 h. Deiodinase isozymes were determined by measuring catalytic activity and by quantification of the BrAc[125I]T4 affinity-labeled substrate binding subunits. Se2+ deficiency was confirmed by measuring the activity of the selenoprotein, glutathione peroxidase. Se2+ caused a concentration-dependent increase in glutathione peroxidase activity in both cell types, as well as in the type I enzyme, but had no effect on the type II enzyme. LLC-PK1 cells contained multiple 75Se(2+)-labeled proteins including the 27-kDa substrate binding subunit of the type I 5'-deiodinase. Glial cells contained seven 75Se(2+)-labeled proteins ranging in size from 12 to 62 kDa, none of which corresponded to the type II substrate binding subunit. these data show that, unlike the type I enzyme, the type II enzyme does not contain a selenocysteine or selenomethionine, further emphasizing the differences between these two isozymes.  相似文献   

19.
Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 μg Se/g diet) or Se-supplemented diet (0.2 or 2 μg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 μg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2′-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 μg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model. The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. This work was supported by the US Department of Agriculture and National Cancer Institute.  相似文献   

20.
1. The activity of ornithine decarboxylase in the liver and kidneys of rats maintained on a cyclical regimen of protein-free and protein-containing diets was investigated. There was a daily activation of the enzyme in response to the feeding of protein after 3 days feeding of protein-free diet. 2. The activation of ornithine decarboxylase in the liver and kidneys of rats re-fed on protein was demonstrable throughout 16 cycles of alternating 3-day periods of protein-free and protein-containing diets. The magnitude of the activation in the kidneys diminished from 20-fold stimulation in the first cycle to 5-fold stimulation (compared with animals fed with protein-free diet) in the later cycles of protein re-feeding. The activation of the enzyme in liver was decreased from 20-fold stimulation in the first cycle to approx. 10-fold stimulation in later cycles. 3. The concentration of spermidine was increased by approx. 50% in the liver of animals during cycling from protein-free to protein-containing diets. Spermine was unchanged, and putrescine was maintained at a low concentration approx. one-fifth to one-tenth that of spermidine after protein re-feeding. 4. The incorporation of [(3)H]thymidine into liver DNA was increased 10-fold in animals re-fed with protein compared with animals receiving protein-free diets. 5. The activation of ornithine decarboxylase by re-feeding of protein was inhibited 90% by the injection of propane-1,3-diamine during re-feeding. The stimulation of DNA synthesis was inhibited 60% by multiple injections of propane-1,3-diamine during the re-feeding of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号