首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chae  Jae Jin  Park  Young Bae  Kim  Sung Han  Hong  Sung Soo  Song  Gyun Jee  Han  K. H.  Namkoong  Yong  Kim  Hyo Soo  Lee  C. C. 《Human genetics》1997,99(2):155-163
Twenty-eight unrelated persons heterozygous for familial hypercholesterolemia (FH) were screened to assess the frequency and nature of major structural rearrangements at the low-density lipoprotein (LDL) receptor gene in Korean FH patients. Genomic DNA was analyzed by Southern blot hybridization with probes encompassing exons 1–18 of the LDL receptor gene. Two different deletion mutations (FH29 and FH110) were detected in three FH patients (10.7%). Each of the mutations was characterized by the use of exon-specific probes and detailed restriction mapping mediated by long-PCR (polymerase chain reaction). Mutation FH29 was a 3.83-kb deletion extending from intron 6 to intron 8 and FH110 was a 5.71-kb deletion extending from intron 8 to intron 12. In FH29, the translational reading frame was preserved and the deducible result was a cysteine-rich A and B repeat truncated protein that might be unable to bind LDL but would continue to bind β-VLDL. FH110 is presumed to be a null allele, since the deletion shifts the reading frame and results in a truncated protein that terminates in exon 13. Sequence analysis revealed that both deletions have occurred between two Alu-repetitive sequences that are in the same orientation. This suggested that in these patients the deletions were caused by an unequal crossing over event following mispairing of two Alu sequences on different chromatids during meiosis. Moreover, in both deletions, the recombinations were related to an Alu sequence in intron 8 and the deletion breakpoints are found within a specific sequence, 27 bp in length. This supports the hypothesis that this region might have some intrinsic instability, and act as one of the important factors in large recombinational rearrangements. Received: 3 April 1996 / Revised: 19 August 1996  相似文献   

2.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

3.
Germline mutation in the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), a heritable form of colorectal cancer. We have previously reported two novel mutations that delete exons 11 and 14 of the APC gene, respectively, at the cDNA level without any splice junction defects at the genomic level. We describe here the precise breakpoints of the two mutations and the possible mechanisms leading to the genomic rearrangement. The first rearrangement is most likely a topoisomerase-I-mediated non-homologous recombination resulting in a 2-kb deletion that deletes exon 11 of the APC gene. Both 5' and 3' breakpoints have two topoisomerase I recognition sites and runs of pyrimidines within the 10-bp sequences in their vicinity. Further, the 3' breakpoint has an adenine-thymidine-rich region. This is probably the first report of a topoisomerase-I-mediated germline mutation in a tumor suppressor gene. The second rearrangement is most likely an Alu-Alu homologous recombination resulting in a 6-kb deletion encompassing exon 14. The Alu elements at the 5' and 3' breakpoints include the 26-bp core sequence thought to stimulate recombination. In both rearrangements, partial sequences from the long interspersed nuclear element family are in the vicinity of the breakpoints. Other than serving as markers for regions of DNA damage, their precise role in the recombination events, if any, is unclear. Both deletions result in truncated APC proteins missing the beta-catenin- and axin-binding domains, resulting in severe polyposis and cancer.  相似文献   

4.
Four deletions in the human factor VIII gene have been characterized at the sequence level in patients with hemophilia A. Deletion JH 1 extends 57 kb from IVS 10 to IVS 18. Intron 13 and exon 14 are partially deleted in patients JH 7 and JH 37, with a loss of 3.2 and 2.4 kb of DNA, respectively. The 3' deletion breakpoint of the JH 21 event resides in intron 3 and extends 5' into intron 1, resulting in the loss of exons 2 and 3. Seven of the eight breakpoints sequenced (5' and 3' for each of the four deletions) occur in nonrepetitive sequence, while the 3' breakpoint of the JH 1 resides in an Alu repetitive element. All of the deletions are the result of nonhomologous recombination. The 5' and 3' breakpoints of JH 1, JH 7, and JH 37 share 2- to 3-bp homologies at the deletion junctions. In contrast, two nucleotides have been inserted at the JH 21 deletion junction. Short sequence homologies may facilitate end-joining reactions in nonhomologous recombination events.  相似文献   

5.
We have generated several deletions within the intron of a yeast actin gene construct which have lead to different splicing efficiencies as measured by Northern blot (RNA blot) and primer extension analyses. Our data especially demonstrate that a minimum distance from the 5' splice site to the internal branch acceptor site is required for accurate and efficient splicing. In a construct in which splicing was completely abolished, splicing could be restored by expanding the distance from the 5' splice site to the internal branch acceptor site with heterologous sequences. Alternative splicing, i.e., exon skipping and the use of a cryptic 5' splice site, was observed when the mRNA precursor was derived from a tandem repeat of a truncated intron with flanking exon sequences.  相似文献   

6.
7.
The proposed ligand binding domain of the low density lipoprotein (LDL) receptor consists of a 40-amino acid cysteine-rich unit that is repeated with some variation seven times. We describe here a mutant allele at the LDL receptor locus in which one of the seven repeats has been deleted. This mutation was found in a patient with the clinical syndrome of homozygous familial hypercholesterolemia. By molecular cloning, we show that the deletion arose by homologous recombination between repetitive Alu sequences in intron 4 and intron 5 of the gene. The deletion removes exon 5, which normally encodes the sixth repeat of the ligand binding domain. In the resultant mRNA, exon 4 is spliced to exon 6, preserving the reading frame. This mRNA produces a shortened protein that reaches the cell surface and reacts with anti-receptor antibodies but does not bind LDL, which contains apoprotein B-100 as its major protein component. Surprisingly, the deleted protein retains the ability to bind and internalize beta-migrating very low density lipoprotein, a lipoprotein that contains apoprotein E as well as apoprotein B-100. These data support the hypothesis that the seven repeated sequences in the receptor constitute the LDL binding domain. The data further indicate that the sixth repeat is required for binding of LDL, but not beta-migrating very low density lipoprotein, and that deletion of a single cysteine-rich repeat can alter the binding specificity of the LDL receptor.  相似文献   

8.
Summary The low-density lipoprotein (LDL) receptor genes from 18 unrelated Japanese heterozygotes and 1 homozygote with classical familial hypercholesterolemia were analyzed by Southern blot hybridization using fragments of the human LDL receptor cDNA as probes. Four different deletion mutations were detected among 20 mutant LDL receptor genes (20%); they were characterized by restriction mapping. None of these mutations has previously been reported in Caucasian patients with FH: three of the mutations were novel and one was similar to the detetion mutation of FH-Tonami described previously in Japanese patients. In three of the four deletion mutations, the rearrangements were related to intron 15 of the LDL receptor gene, in which many Alu sequences exist. The data suggest that a wide range of molecular heterogeneity exists even in major rearrangements resulting in deletions in the LDL receptor gene. The data also support the hypothesis that there are preferential sites within the LDL receptor gene for major rearrangements resulting in deletions. The possibility that a higher frequency of deletion mutations occurs in classical FH than previously suspected is discussed.  相似文献   

9.
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5′ proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3′ hepatic control region, derived from a region ∼18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3′ splice acceptor sites causing deletion of cloned 5′ untranslated mRNA sequences and, in some cases, deletion of the 5′ end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3′ splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1–exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.  相似文献   

10.
We have previously identified a patient with familial hypercholesterolaemia (FH), where the defect appears to be caused by a deletion in the 3' region of the low-density lipoprotein (LDL)-receptor gene. We have now isolated the LDL-receptor gene from the patient and have studied the defect at the DNA level. Restriction mapping and sequence analysis demonstrate that a 4-kb DNA deletion has occurred between two alu-repetitive sequences that are in the same orientation, one in intron 12 and the other in intron 14. This deletion eliminates exons 13 and 14, and changes the reading frame of the resulting spliced mRNA such that a stop codon is created in the following exon. Immuno- and ligand-blot analysis using cultured fibroblasts from this patient revealed the normal gene product, but failed to detect any smaller receptor protein. This implies that the truncated receptor protein that is synthesised is rapidly degraded. We suggest that in this patient the deletion is caused by an unequal crossing-over event that occurred between two homologous chromosomes at meiosis.  相似文献   

11.
Recently, we have found an allelic deletion of the secretor alpha(1,2)fucosyltransferase (FUT2) gene in individuals with the classical Bombay phenotype of the ABO system. The FUT2 gene consists of two exons separated by an intron that spans approximately 7 kb. The first exon is noncoding, whereas exon 2 contains the complete coding sequence. Since the 5' breakpoint of the deletion has previously been mapped to the single intron of FUT2, we have cloned the junction region of the deletion in a Bombay individual by cassette-mediated polymerase chain reaction. In addition, the region from the 3' untranslated region of FUT2 to the 3' breakpoint sequence has been amplified from a control individual. DNA sequence analysis of this region indicates that the 5' breakpoint is within a free left Alu monomer (FLAM-C) sequence that lies 1.3 kb downstream of exon 1, and that the 3' breakpoint is within a complete Alu element (AluSx) that is positioned 1.5 kb downstream of exon 2. The size of the deletion is estimated to be about 10 kb. There is a 25-bp sequence identity between the reference DNA sequences surrounding the 5' and 3' breakpoints. This demonstrates that an Alu-mediated large gene deletion generated by unequal crossover is responsible for secretor alpha(1,2)fucosyltransferase deficiency in Indian Bombay individuals.  相似文献   

12.
The mechanism of cellular src (c-src) transduction by a transformation-defective deletion mutant, td109, of Rous sarcoma virus was studied by sequence analysis of the recombinational junctions in three td109-derived recovered sarcoma viruses (rASVs). Our results show that two rASVs have been generated by recombination between td109 and c-src at the region between exons 1 and 2 defined previously. Significant homology between td109 and c-src sequences was present at the sites of recombination. The viral and c-src sequence junction of the third rASV was formed by splicing a cryptic donor site at the 5' region of env of td109 to exon 1 of c-src. Various lengths of c-src internal intron 1 sequences were incorporated into all three rASV genomes, which resulted from activation of potential splice donor and acceptor sites. The incorporated intron 1 sequences were absent in the c-src mRNA, excluding its being the precursor for recombination with td109 and implying that initial recombinations most likely took place at the DNA level. A potential splice acceptor site within the incorporated intron 1 sequences in two rASVs was activated and was used for the src mRNA synthesis in infected cells. The normal env mRNA splice acceptor site was used for src mRNA synthesis for the third rASV.  相似文献   

13.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

14.
A restriction fragment length polymorphism within the human alpha 2-plasmin inhibitor gene has been detected by Southern blot hybridization using an alpha 2-plasmin inhibitor cDNA probe. This restriction fragment length polymorphism can be attributed to the presence of two alleles, A and B, that are distributed in Hardy-Weinberg equilibrium with frequencies of 73.5% and 2.65%, respectively, in 66 unrelated Caucasian individuals or with frequencies of 51.0% and 49.0%, respectively, in 50 unrelated Japanese individuals. The minor allele, B, is due to a deletion of about 720 base pairs in intron 8 of the alpha 2-plasmin inhibitor gene. Sequence analysis of the deletion junction in allele B and the corresponding regions of allele A demonstrated the presence of oppositely oriented Alu sequences at the 5' and 3' deletion boundaries. These data suggest that this restriction fragment length polymorphism was caused by intrastrand recombination between Alu sequences.  相似文献   

15.
16.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

17.
Ehlers-Danlos syndrome (EDS) type IV results from mutations in the COL3A1 gene, which encodes the constituent chains of type III procollagen. We have identified, in 33 unrelated individuals or families with EDS type IV, mutations that affect splicing, of which 30 are point mutations at splice junctions and 3 are small deletions that remove splice-junction sequences and partial exon sequences. Except for one point mutation at a donor site, which leads to partial intron inclusion, and a single base-pair substitution at an acceptor site, which gives rise to inclusion of the complete upstream intron into the mature mRNA, all mutations result in deletion of a single exon as the only splice alteration. Of the exon-skipping mutations that are due to single base substitutions, which we have identified in 28 separate individuals, only two affect the splice-acceptor site. The underrepresentation of splice acceptor-site mutations suggests that the favored consequence of 3' mutations is the use of an alternative acceptor site that creates a null allele with a premature-termination codon. The phenotypes of those mutations may differ, with respect to either their severity or their symptomatic range, from the usual presentation of EDS type IV and thus have been excluded from analysis.  相似文献   

18.
Recognition of 5' splice points by group I and group II self-splicing introns involves the interaction of exon sequences--directly preceding the 5' splice site--with intronic sequence elements. We show here that the exon binding sequences (EBS) of group II intron aI5c can accept various substitutes of the authentic intron binding sites (IBS) provided in cis or in trans. The efficiency of cleavages at these cryptic 5' splice sites was enhanced by deletion of the authentic IBS2 element. All cryptic 5' cleavage sites studied here were preceded by an IBS1 like sequence; indicating that the IBS1/EBS1 pairing alone is sufficient for proper 5' splice site selection by the intronic EBS element. The results are discussed in terms of minimal requirements for 5' cleavages and position effects of IBS sites relative to the intron.  相似文献   

19.
Two alternative exons, BEK and K-SAM, code for part of the ligand binding site of fibroblast growth factor receptor 2. Splicing of these exons is mutually exclusive, and the choice between them is made in a tissue-specific manner. We identify here pre-mRNA sequences involved in controlling splicing of the K-SAM exon. The short K-SAM exon sequence 5'-TAGGGCAGGC-3' inhibits splicing of the exon. This inhibition can be overcome by mutating either the exon's 5' or 3' splice site to make it correspond more closely to the relevant consensus sequence. Two separate sequence elements in the intron immediately downstream of the K-SAM exon, one of which is a sequence rich in pyrimidines, are both needed for efficient K-SAM exon splicing. This is no longer the case if either the exon's 5' or 3' splice site is reinforced. Furthermore, if the exon inhibitory sequence is removed, the intron sequences are not required for splicing of the K-SAM exon in a cell line which normally splices this exon. At least three elements are thus involved in controlling splicing of the K-SAM exon: suboptimal 5' and 3' splice sites, an exon inhibitory sequence, and intron activating sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号