首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
《Phytomedicine》2014,21(12):1504-1508
PurposeThe effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity.MethodsMale Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks.ResultsSerum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower.ConclusionPortulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects.  相似文献   

2.
The protein (apo HDL2) from human serum high density lipoprotein of d 1.063–1.125 g/ml (HDL2) and its major polypeptide chains III and IV, were spin-labelled with a nitroxide mixed-anhydride reagent. The electron spin resonance (E.S.R.) spectra of the labelled materials showed a dependence on pH, ionic strength and temperature. Under conditions favouring protein aggregation (isoelectric point region, high ionic strength) there was a marked accentuation of the strongly (broad signal) over the weakly (narrow signal) constrained spin label. A similar accentuation was observed in the spectra of spin-labelled apo HDL2, or its fractions III and IV, re-lipidated with a mixture of phosphatidyl choline and cholesterol esters. Such spectra were similar to those obtained with native HDL2, spin-labelled in its protein moiety. A systematic analysis of the graded re-lipidation of apo HDL2 by non-polar and polar lipids showed that the spin label method employed was a good indicator of protein-lipid interactions, particularly if applied to well characterized lipid-protein complexes isolated in the ultracentrifuge. The method employed, however, provided no information on the nature of such interactions.  相似文献   

3.
The relationships between the apoproteins of intact human serum high density lipoprotein particles, HDL2 and HDL3, have been studied by observing the exchange of radioactively labeled apoproteins between one subclass and the other. This exchange process can be inhibited by chemically crosslinking the apoproteins of either the labeled or unlabeled subclass. These results are consistent with a dynamic relationship between HDL2 and HDL3 which appears dependent upon the association and perhaps the conformation of the apoprotein components of the lipoprotein particles.  相似文献   

4.
The effects on serum cholesterol level were examined in rats fed on various xenobiotics. The hypercholesterolemia induced by polychlorinated biphenyls (PCB) was characterized in rats, from which lipoproteins were isolated by ultracentrifugation. A dietary addition of 0.03% PCB, 0.3% chloretone, 0.1% aminopyrine, or 0.2% 2,6-di-tert-butyl-p-cresol (BHT) resulted in a significant increase in serum cholesterol, although the chemical structure of each of these xenobiotics was different. The serum cholesterol level was markedly increased by one month of PCB feeding, the effect of PCB on the serum phospholipid level being similar. The serum triglyceride level transiently increased within 7 days of feeding with PCB diet. PCB feeding resulted in the elevation of all lipoproteins, including VLDL, LDL, HDL1, and HDL2, a marked increase being observed in HDI1. Both HDL1 and HDL2 isolated from PCB-treated rats contained more apolipoprotein A-I (apo A-I) and less apo E than normal. VLDL isolated from PCB-treated rats had more cholesterol and apo E, but less apo C than that of the control animals. These data demonstrate that PCB feeding resulted in increased VLDL rich in cholesterol and apo E, and increased HDL rich in apo A-I. This experimentally induced hypercholesterolemia resulting in apo A-I-rich HDL would be a useful model for investigating the metabolism of apo-A-I and HDL.  相似文献   

5.

Background

High-density lipoprotein (HDL) enhances cholesterol efflux from the arterial wall and exhibits potent anti-inflammatory and anti-atherosclerosis (AS) properties. Whether raised HDL levels will clinically benefit patients with acute coronary syndrome (ACS) and the value at which these effects will be apparent, however, is debatable. This study examined the HDL subclass distribution profile in patients with ACS.

Methods

Plasma HDL subclasses were measured in 158 patients with established ACS and quantified by two-dimensional gel electrophoresis and immunoblotting. ACS diagnosis was based on symptoms of cardiac ischemia, electrocardiogram (ECG) abnormalities, speciality cardiac enzyme change along with presence of coronary heart disease (CHD) on coronary angiography.

Results

The small-sized preβ1-HDL, HDL3b, and HDL3a levels were significantly higher, and the large-sized HDL2a and HDL2b levels were significantly lower in patients with ACS than in those with stable angina pectoris (SAP) and in normal control subjects. Meanwhile, with an elevation in the low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), body mass index (BMI), and blood pressure (BP), and the reduction in the high density lipoprotein cholesterol (HDL-C) levels, the HDL2b contents significantly decreased and the preβ1-HDL contents significantly increased in patients with ACS. The correlation analysis revealed that the apolipoprotein (apo)A-I levels were positively and significantly with all HDL subclasses contents; plasma total cholesterol (TC) and fasting plasma glucose (FPG) levels were inversely associated with HDL2a, and HDL2b. Moreover, the FPG levels were positively related to HDL3c, HDL3b, and HDL3a in ACS patients.

Conclusion

The HDL subclass distribution profile remodeling was noted in the patients with ACS. Plasma lipoprotein and FPG levels, BP, and BMI play an important role in the HDL subclass metabolism disorder for patients with ACS. The HDL subclass distribution phenotype might be useful as a novel biomarker to assist in the risk stratification of patients with ACS.  相似文献   

6.
Lipoprotein fractions in Rana esculenta were separated using the same salt intervals currently applied for human lipoproteins. Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were analyzed with reference to the electrophoretic pattern. The lipoprotein electrophoretic pattern in males and females throughout the reproductive cycle showed minor differences. In general, each fraction was characterized by a specific apolipoprotein content. VLDL and LDL fractions were dominated by a high molecular weight (MW) band, most likely the counterpart of human Apolipoprotein B (apo B). The apo B in R. esculenta cross reacted, although weakly, with antibodies raised against chicken apo B. The HDL fraction showed a band with an apparent MW of 29 kDa. The electrophoretic mobility of the protein moiety of HDL was similar to human apolipoprotein A-I (apo A-I). However, HDL apolipoprotein of R. esculenta did not cross react with antibodies against chicken apo A-I under either denaturing or native conditions. The HDL apolipoprotein of R. esculenta was purified by DEAE-Sephacel chromatography followed by HPLC. Its amino acid composition showed a moderate correlation with trout, salmon, chicken and human apo A-I.  相似文献   

7.
The ligand-binding domain of low-density lipoprotein (LDL) is composed of seven 40-amino-acid repeats encoded by exons 2–6. Previous studies identified a missense mutation in codon 66 of exon 3, which resulted in the production of LDL receptor protein that is not processed to its mature form. In the current investigation, we documented the presence of two identical mutant LDL receptor alleles (Trp66→ Gly) in two familial hypercholesterolemia (FH) probands, II-1 and II-2, associated with markedly elevated plasma LDL cholesterol (17.22 ± 0.78 and 11.95 ± 0.24 mmol/liter, respectively). Functional assays of their fibroblast LDL receptor showed inefficient binding (39 and 50%), internalization (33 and 37%), and degradation (32 and 37%) compared with controls. The contribution of the apo B gene to variation in LDL levels was virtually eliminated given the normal ligand interaction with cell surface receptors and the absence of the mutation occurring in codon 3500 of the apo B gene. Similarly, the homozygous apo E3/E3wildtype phenotype excluded any genetic contribution of apo E to the lipoprotein abnormalities. Furthermore, the LPL mutations commonly observed in French Canadians could not account for the observed lipid alterations. Several alterations in lipoprotein composition characterized VLDL, IDL, LDL, HDL2, and HDL3fractions. Moreover, defective intestinal fat transport was observed in both probands (II-1 and II-2). Thus, the disturbance of lipoprotein concentration, composition, size, and metabolism may in part be related to the exon 3 mutation (Trp66→ Gly) of the LDL receptor gene. The biochemical phenotype was more severe in the father (I-1) than in the mother (I-2), and in the younger homozygous proband (II-1) than in the older (II-2). The greater severity was associated with a higher LDL cholesterol/HDL cholesterol ratio. Whether the differences between the two probands are due to polygenic factors or to a metabolic consequence of a major nonallelic trait is unknown. Nevertheless, the present biochemical findings stress the extent of the lipid abnormalities associated with homozygous FH and the importance of the phenotypic variability encountered even among subjects carrying the same mutation.  相似文献   

8.
HDL subclasses detection, in cardiovascular risk, has been limited due to the time-consuming nature of current techniques. We have developed a time-saving and reliable separation of the principal HDL subclasses employing iodixanol density gradient ultracentrifugation (IxDGUC) combined with digital photography. HDL subclasses were separated in 2.5 h from prestained plasma on a three-step iodixanol gradient. HDL subclass profiles were generated by digital photography and gel scan software. Plasma samples (n = 46) were used to optimize the gradient for the resolution of HDL heterogeneity and to compare profiles generated by IxDGUC with gradient gel electrophoresis (GGE); further characterization from participants (n = 548) with a range of lipid profiles was also performed. HDL subclass profiles generated by IxDGUC were comparable to those separated by GGE as indicated by a significant association between areas under the curve for both HDL2 and HDL3 (HDL2, r = 0.896, P < 0.01; HDL3, r = 0.894, P < 0.01). The method was highly reproducible, with intra- and interassay coefficient of variation percentage < 5 for percentage area under the curve HDL2 and HDL3, and < 1% for peak Rf and peak density. The method provides time-saving and cost-effective detection and preparation of the principal HDL subclasses.  相似文献   

9.
Previous studies have indicated that in HepG2 cells HDL3-signalling involves glycosylphosphatidylinositol (GPI) anchored proteins. HDL3-binding to HepG2 cells was found to be enhanced by cellular preincubation with PI-PLC inhibitors and sensitive to a cellular preincubation with exogenous PI-PLC, suggesting that HDL3 binds directly on GPI-anchored proteins to initiate signaling. Moreover HDL3-binding was found to be partly inhibited by antibodies against the HDL-binding protein (AbHBP).HDL3, when binding to HepG2 cells, promoted the release in the culture medium of a 110 kDa protein that binds AbHBP, while a cellular preincubation with antibodies against the inositol-phosphoglycan (IPG) moiety of GPI-anchor (AbIPG), used to block lipolytic cleavage of the GPI-anchor, inhibits HDL3-induced release of the 110 kDa protein in the culture medium.In [3H]-PC prelabeled HepG2 cells, AbHBP were found to stimulate PC-hydrolysis and DAG generation within 5 min as did HDL3 stimulation. Cellular preincubation with AbIPG was found to inhibit only the HDL3-signal and not the AbHBP-signal, while a prior cellular pretreatment with PI-PLC from Bacillus cereus was found to inhibit the HDL3-and AbHBP-signal. Moreover cellular preincubation with AbHBP for 1 h at 37°C was found to inhibit HDL3-signalling pathways.Our results suggest that in HepG2 cells a 110 kDa protein, which could be HBP, can be anchored to the membrane via GPI, and can function in HDL3-signalling pathways as binding sites.  相似文献   

10.
The management of overweight subjects by interventions aimed at reducing inflammation is highly desirable. To date, observational studies have identified a link between increased dietary antioxidant intake and reduced cardiovascular morbidity. However, direct trial evidence regarding the ability of antioxidants to influence inflammation is lacking. Therefore, this study examined lycopene's ability to lower systemic and high-density lipoprotein (HDL)-associated inflammation in moderately overweight middle-aged subjects. Serum was collected before and after a 12-week intervention from 54 moderately overweight, middle-aged individuals. Subjects were randomised to one of three groups: control diet (< 10 mg lycopene/week), lycopene-rich diet (224–350 mg lycopene/week) and lycopene supplement (70 mg lycopene/week). HDL was subfractionated into HDL2&3 by rapid ultracentrifugation. Compliance was monitored by assessing lycopene concentration in serum and HDL2&3. Systemic and HDL-associated inflammation was assessed by measuring serum amyloid A (SAA) levels. HDL functionality was determined by monitoring the activities of paraoxonase-1 (PON-1), cholesteryl ester transfer protein (CETP) and lecithin cholesterol acyltransferase (LCAT). Lycopene increased in serum and HDL2&3 following both lycopene interventions (P<.001, for all), while SAA decreased in serum following the lycopene supplement and in HDL3 following both lycopene interventions (P<.05 for all). PON-1 activity increased in serum and HDL2&3 in both lycopene groups (P<.05, for all). Furthermore, the activity of CETP decreased in serum following the lycopene supplement, while the activity of LCAT increased in serum and HDL3 following both lycopene interventions (P<.05 for all). These results demonstrate that in moderately overweight, middle-aged subjects, increasing lycopene intake leads to changes to HDL2&3, which we suggest enhanced their antiatherogenic properties. Overall, these results show the heart-protective properties of increased lycopene intake.  相似文献   

11.
Plasma cholesterol from low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors that either totally degrade lipoproteins as the LDL receptor or selectively take up their cholesteryl esters (CE) like the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-I on the uptake of LDL and HDL3 by HepG2 cells. In experiments conducted with exogenously added purified apoC-I, no significant effect was observed on lipoprotein–protein association and degradation; however, LDL- and HDL3-CE selective uptake was significantly reduced in a dose-dependent manner. This study also shows that apoC-I has the ability to associate with HepG2 cells and with LDL and HDL3. Moreover, pre-incubation of HepG2 cells with apoC-I reduces HDL3-CE selective uptake and pre-incubation of LDL and HDL3 with apoC-I decreases their CE selective uptake by HepG2 cells. Thus, apoC-I can accomplish its inhibitory effect on SR-BI activity by either binding to SR-BI or lipoproteins. We conclude that by reducing hepatic lipoprotein-CE selective uptake, apoC-I has an atherogenic character.  相似文献   

12.
A 45‐day feeding trial was conducted to study the effect of dietary chitin, either from a natural source (shrimphead meal) or in purified form, on the growth and survival of post‐larvae (PL) Macrobrachium rosenbergii. Three hundred uniform size (average weight 20 ± 0.05 mg) PL were equally divided in five treatments, each with three replicates. Five isonitrogenous (35% crude protein) semipurified diets were prepared by varying the source and level: T1 (5% purified chitin), T2 (10% purified chitin), T3 (5% natural chitin, equivalent to 22% shrimphead meal), T4 (10% natural chitin, equivalent to 44% shrimphead meal) and T0 as control (no chitin). The addition of chitin either from shrimphead meal (natural source) or in purified form enhanced the growth rate of PL significantly (P < 0.05) over the control group. No significant variation (P > 0.05) was observed in T1, T3 and T4 groups with respect to weight gain percentage, specific growth rate (SGR) and feed conversion ratio (FCR). However, the growth rate of T2 was significantly (P < 0.05) lower and similar to the control group. This suggests that PL M. rosenbergii were unable to utilize purified chitin at the 10% level in their diet. However, the 10% chitin equivalent of shrimphead meal (44%) did not show any growth depression. There were no chitinoclastic bacteria found in the gut of M. rosenbergii PL in any treatment group. The conclusion is that chitin can stimulate the growth of the M. rosenbergii PL. Shrimphead meal is a good source of chitin, which can be safely used in up to 44% of the diet.  相似文献   

13.
We studied the in vitro conversion of HDL3 labeled with a radioiodinated diacyl lipid associating peptide (diLAP). DiLAP was previously shown to be nontransferable, which permitted its' use as a reliable marker of HDL particles. DiLAP-labeled HDL3 was incubated for 23 h at 37°C in human or rat plasma or in reconstituted media containing delipidated plasma and/or lipoproteins and/or partially purified CETP. At the end of the incubations, the samples were adjusted to a density of 1.125 g/ml and ultracentrifuged. The two resulting fractions containing HDL2 and HDL3, respectively, were analyzed by gradient gel electrophoresis. Depending upon experimental conditions, diLAP-labeled HDL3 was converted into HDL2b- and/or small HDL3c-like particles. LCAT inhibition and to a lesser extent CETP promoted the formation of small HDL3c. Reactivation of LCAT led to the disappearance of small HDL3c. No HDL3c formed from HDL2 even in the absence of LCAT activity. When the incubations were performed in the presence of 100 mM thimerosal, which inhibited PLTP but not CETP activity, the conversion of diLAP-labeled HDL3 into HDL2 was almost completely blocked. Collective consideration of these data indicates that the formation of small HDL is moderately facilitated by CETP; that small HDL are converted to larger HDL species by LCAT and that the transformation of HDL3 into HDL2 is a process which largely depends upon PLTP activity.  相似文献   

14.
Human HDL3 (d 1.125−1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products.
  • 1.(1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5–10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12–15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 μM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL.
  • 2.(2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21–1.25 g /ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15–30% lipolysis, the lecithin:cholesterol acyltransferase reactivity of HDL3 was reduced about 30–40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle.
  • 3.(3) The addition of the lecithin:cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin:cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin:cholesterol acyltransferase-induced removal of cellular cholesterol.
  相似文献   

15.
To remove endotoxins (lipopolysaccharides; LPS) from cell products used as drugs, water-insoluble poly(ε-lysine) (PL) particles were prepared by cross-linking with PL originating from Streptomyces albulus and chloromethyloxirane (CMO). The apparent pKa (pKa,app) and the anion-exchange capacity of the particles were easily adjusted by changing the PL ratio and the CMO ratio. The higher the pKa,app, the greater the LPS-adsorption capacity of the particles. On the other hand, when the PL ratio (in the particles) increased to 75 unit-mol% or higher, the adsorption of bovine serum albumin by the particles also increased, but decreased with increasing ionic strength of the buffer to μ=0.2 or higher. The adsorption of γ-globulin increased with decreasing PL ratio to 65 unit-mol% or lower. As a result, when the PL ratio was 70 unit-mol% and the pKa,app was 6.7, the PL/CMO particles selectively removed LPS from various protein solutions that were naturally contaminated with LPS, at pH 6.0 and μ=0.05.  相似文献   

16.
Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.5% apolipoprotein (apo) B depleted human serum, HDL3, and apo A-I. Net cell-cholesterol influxes were observed when cholesterol-normal J774 cells were incubated with the same acceptors except apo A-I. When incubated with 2.5% individual sera, cholesterol mass efflux in free cholesterol (FC)-enriched J774 cells correlated with the HDL-cholesterol (HDL-C) concentrations (r2 = 0.4; P=0.003), whereas cholesterol mass influx in cholesterol-normal J774 cells correlated with the LDL cholesterol (LDL-C) concentrations (r2 = 0.6; P<0.0001) of the individual sera. A positive correlation was observed between measurements of [3H]cholesterol efflux and reductions in cholesterol mass (r2 = 0.4; P=0.001) in FC-enriched J774 cells. In conclusion, isotopic efflux measurements from cholesterol-normal or cholesterol-enriched cells provide an accurate measurement of relative ability of an acceptor to remove labeled cholesterol under a specific set of experimental conditions, i.e., efflux potential. Moreover, isotopic efflux measurements can reflect changes in cellular cholesterol mass if the donor cells are enriched with cholesterol.  相似文献   

17.
Objective: To determine the effect of short‐term weight loss in obese women on concentrations of plasma cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), two new risk factors for cardiovascular disease. Research Methods and Procedures: Plasma CETP and PLTP mass concentrations were measured in 38 obese, non‐diabetic women before and after a moderate, 4% weight loss that was obtained by a 1250 kcal/d diet for 4 weeks. Anthropometric and biological parameters were measured before and after weight loss. Results: Plasma CETP concentration decreased substantially after weight loss (2.76 ± 0.79 before and 2.31 ± 0.69 mg/L after; p = 0.000), and the same was true for plasma PLTP concentration (9.01 ± 2.44 mg/L before vs. 8.34 ± 2.57 after; p = 0.043). The HDL profile shifted toward the small‐sized range, with significant decreases in the relative abundance of HDL2b and HDL2a at the expense of HDL3b after weight loss. A significant, positive correlation between CETP and PLTP mass concentrations is reported for the first time in obese patients (r = 0.43, p = 0.004), and weight reduction was accompanied by early, concomitant, and parallel decreases in plasma CETP and PLTP levels (r = 0.47, p = 0.003). The significant relationship between CETP and PLTP levels was lost after the dietary intervention (r = 0.27; p = 0.11). Discussion: CETP and PLTP correlate positively and significantly in obese patients. The hypocaloric dietary manipulation constitutes a relevant intervention to reduce rapidly and simultaneously plasma levels of CETP and PLTP. The impact of reduced PLTP activity on HDL size appeared to be more prominent than the impact of concomitant reduction in CETP activity.  相似文献   

18.
Interaction between high density lipoproteins (HDL) and liposomes results in both a structural modification of HDL and the generation of new pre-β HDL-like particles. Here, phosphatidylcholine liposomes and human HDL were incubated at liposomal phospholipid/HDL phospholipid (L-PL/HDL-PL) ratios of 1:1, 3:1 and 5:1 with a subsequent assessment of the distribution of apolipoprotein (apo) A-I, apo A-II, free cholesterol (FC) and PL between newly generated pre-β mobility lipoproteins and non-disrupted liposomes. Both at L-PL/HDL-PL ratios of 3:1 and 5:1 the fraction of liposomal-derived PL associated with pre-β fraction was significantly higher than those accepted by α-HDL. We found that 78% of apo A-I released from HDL was incorporated into pre-β mobility fraction. The relative contents of PL and apo A-I in pre-β fraction were constant irrespective of the initial L-PL/HDL-PL ratio in the incubation mixture and accounted for approximately 83 and 11%, respectively. Apo A-II was detached from HDL to a similar extent as apo A-I and distributed evenly between pre-β fraction and non-disrupted liposomes. Apo A-II constituted approximately 1%, by weight, in these fractions at all L-PL/HDL-PL ratios investigated. It corresponded approximately to 10% of pre-β fraction protein mass. Both liposomes and pre-β fraction accepted comparable amounts of FC released from HDL. This data indicated that during the interaction between human HDL and phosphatidylcholine liposome apo A-II participates both in structural modification of liposomes and in the generation of pre-β mobility fraction of constant content of PL, apo A-I and apo A-II. Involvement of apo A-II in HDL–liposome interaction may influence the anti-atherogenic properties of liposomes.  相似文献   

19.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

20.
Physicochemical studies have been carried out on the hemolymph and egg lipoproteins of the rock crab (Cancer antennarius). Analytical ultracentrifugal analyses of vitellogenic female HDL3 revealed the presence of two types of lipoproteins. The first with a sedimentation rate of 5.35 S was comparable to lipoproteins in male and non-vitellogenic female hemolymph. The second with a sedimentation rate of 10.74 S was comparable to the major lipoprotein of egg yolk. A similar comparison could be made following electrophoretic analyses in native polyacrylamide gels. Electrophoresis in SDS-polyacrylamide gels revealed three major apolipoproteins common to egg and vitellogenic HDL3. A fourth apolipoprotein was found in both male and female HDL3. In contrast to mammalian HDL, none of these crustacean apolipoproteins had a molecular weight less than 82000. One of these apolipoproteins appears to be comparable physicochemically to the enteric form of apolipoprotein B in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号