首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the elastic neutron scattering technique to investigate the dynamics of the two main saccharidic components of starch: amylose and amylopectin. The measurements were carried out in the temperature range of 20 to 320 K and at different hydration levels from the dry state up to 0.47 g saccharide/g D(2)O. In the dry samples, the atomic dynamics is harmonic up to approximately 300 K. In the hydrated samples a "glass-like" transition leading to an anharmonic dynamics is observed. The onset of the anharmonicity occurs at temperatures that increase from approximately 180 K to 260 K upon decreasing hydration from 0.5 to 0.1 g saccharide/g D(2)O. This behavior is qualitatively similar to that observed in hydrated globular proteins, but quantitative differences are present. Assuming a simple asymmetric double-well potential model, the temperature and hydration dependence of the transition have been described in terms of few physical parameters.  相似文献   

2.
The low-frequency dynamics of copper azurin has been studied at different temperatures for a dry and deuterium hydrated sample by incoherent neutron scattering and the experimental results have been compared with molecular dynamics (MD) simulations carried out in the same temperature range. Experimental Debye-Waller factors are consistent with a dynamical transition at approximately 200 K which appears partially suppressed in the dry sample. Inelastic and quasielastic scattering indicate that hydration water modulates both vibrational and diffusive motions. The low-temperature experimental dynamical structure factor of the hydrated protein shows an excess of inelastic scattering peaking at about 3 meV and whose position is slightly shifted downwards in the dry sample. Such an excess is reminiscent of the “boson peak” observed in glass-like materials. This vibrational peak is quite well reproduced by MD simulations, although at a lower energy. The experimental quasielastic scattering of the two samples at 300 K shows a two-step relaxation behaviour with similar characteristic times, while the corresponding intensities differ only by a scale factor. Also, MD simulations confirm the two-step diffusive trend, but the slow process seems to be characterized by a decay faster than the experimental one. Comparison with incoherent neutron scattering studies carried out on proteins having different structure indicates that globular proteins display common elastic, quasielastic and inelastic features, with an almost similar hydration dependence, irrespective of their secondary and tertiary structure. Received: 12 October 1998 / Revised version: 19 February 1999 / Accepted: 1 March 1999  相似文献   

3.
The molecular understanding of protein stabilization by the disaccharide trehalose in extreme temperature or hydration conditions is still debated. In the present study, we investigated the role of trehalose on the dynamics of the protein C-phycocyanin (C-PC) by neutron scattering. To single out the motions of C-PC hydrogen (H) atoms in various trehalose/water environments, measurements were performed in deuterated trehalose and heavy water (D(2)O). We report that trehalose decreases the internal C-PC dynamics, as shown by a reduced diffusion coefficient of protein H atoms. By fitting the Elastic Incoherent Structure Factor-which gives access to the "geometry" of the internal proton motions-with the model of diffusion inside a sphere, we found that the presence of trehalose induces a significantly higher proportion of immobile C-PC hydrogens. We investigated, by elastic neutron scattering, the mean square displacements (MSDs) of deuterated trehalose/D(2)O-embedded C-PC as a function of temperature in the range of 40-318 K. Between 40 and approximately 225 K, harmonic MSDs of C-PC are slightly smaller in samples containing trehalose. Above a transition temperature of approximately 225 K, we observed anharmonic motions in all trehalose/water-coated C-PC samples. In the hydrated samples, MSDs are not significantly changed by addition of 15% trehalose but are slightly reduced by 30% trehalose. In opposition, no dynamical transition was detected in dry trehalose-embedded C-PC, whose hydrogen motions remain harmonic up to 318 K. These results suggest that a role of trehalose would be to stabilize proteins by inhibiting some fluctuations at the origin of protein unfolding and denaturation.  相似文献   

4.
The nuclear magnetic transverse decay and the proton second moment of bovine serum albumin samples dry and hydrated with different water isotope compositions show that at temperatures around 170 K, there is a dramatic change in the dynamics of the water associated with the protein interface. By comparison, observation of the protein protons when hydrated with deuterium oxide provides no evidence for significant dynamical changes near 170 K. The proton second moment of the hydrated protein shows that the protein structure becomes more open with increasing hydration from the lyophilized condition and that the side chains extend from the protein surface into the solvent in the hydrated but not the dry cases. The proton second moment of serum albumin hydrated with H(2)O increases dramatically with decreasing temperature near 170 K, demonstrating that the water forms a rigid solid around the protein which effectively fills the surface irregularities created by the protein fold. Solvation with dimethyl sulfoxide yields small effects compared with water.  相似文献   

5.
The effects of a static electric field on the dynamics of lysozyme and its hydration water are investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D 2O) to capture the protein dynamics and with light water (H 2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about ~ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm ( ~2 × 10 6 V/m) for the protein hydrated with D 2O and 0 kV and 1 kV/mm for the H 2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of an electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value E c ~2–3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.  相似文献   

6.
J Fitter 《Biophysical journal》1999,76(2):1034-1042
Internal molecular motions of proteins are strongly affected by environmental conditions, like temperature and hydration. As known from numerous studies, the dynamical behavior of hydrated proteins on the picosecond time scale is characterized by vibrational motions in the low-temperature regime and by an onset of stochastic large-amplitude fluctuations at a transition temperature of 180-230 K. The present study reports on the temperature dependence of internal molecular motions as measured with incoherent neutron scattering from the globular water-soluble protein alpha-amylase and from a protein-lipid complex of rhodopsin in disk membranes. Samples of alpha-amylase have been measured in a hydrated and dehydrated state. In contrast to the hydrated sample, which exhibits a pronounced dynamical transition near 200 K, the dehydrated alpha-amylase does not show an appreciable proportion of stochastic large-amplitude fluctuations and no dynamical transition in the measured temperature range of 140-300 K. The obtained results, which are compared to the dynamical behavior of protein-lipid complexes, are discussed with respect to the influence of hydration on the dynamical transition and in the framework of the glass transition.  相似文献   

7.
The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H(2)O and D(2)O, respectively, revealed that membrane and water motions on the ns-ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049-18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H(2)O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D(2)O (Weik et al. in J Mol Biol 275:632-634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins.  相似文献   

8.
Inelastic neutron scattering spectra of myoglobin hydrated to 0.33 g water (D2O)/g protein have been measured in the low frequency range (1-150 cm-1) at various temperatures between 100 and 350 K. The spectra at low temperatures show a well-resolved maximum in the incoherent dynamic structure factor Sinc(q, omega) at approximately 25 cm-1 and no elastic broadening. This maximum becomes gradually less distinct above 180 K due to the increasing amplitude of quasielastic scattering which extends out to 30 cm-1. The vibrational frequency distribution derived independently at 100 and 180 K are very similar, suggesting harmonic behavior at these temperatures. This result has been used to separate the vibrational motion from the quasielastic motion at temperatures above 180 K. The form of the density of states of myoglobin is discussed in relation to that of other amorphous systems, to theoretical calculations of low frequency modes in proteins, and to previous observations by electron-spin relaxation of fractal-like spectral properties of proteins. The onset of quasielastic scattering above 180 K is indicative of a dynamic transition of the system and correlates with an anomalous increase in the atomic mean-squared displacements observed by M?ssbauer spectroscopy (Parak, F., E. W. Knapp, and D. Kucheida. 1982. J. Mol. Biol. 161: 177-194.) and inelastic neutron scattering (Doster, W., S. Cusack, and W. Petry, 1989. Nature [Lond.]. 337: 754-756.) Similar behavior is observed for a hydrated powder of lysozyme suggesting that the low frequency dynamics of globular proteins have common features.  相似文献   

9.
Protein dynamics in hydrated and vacuum-dried photosystem II (PS II) membrane fragments from spinach has been investigated by quasielastic neutron scattering (QENS) in the temperature range between 5 and 300 K. Three distinct temperature ranges can be clearly distinguished by active type(s) of protein dynamics: (A) At low temperatures (T < 120 K), the protein dynamics of both dry and hydrated PS II is characterized by harmonic vibrational motions. (B) In the intermediate temperature range (120 < T < 240 K), the total mean square displacement total slightly deviates from the predicted linear behavior. The QENS data indicate that this deviation, which is virtually independent of the extent of hydration, is due to a partial onset of diffusive protein motions. (C) At temperatures above 240 K, the protein flexibility drastically changes because of the onset of diffusive (large-amplitude) protein motions. This dynamical transition is clearly hydration-dependent since it is strongly suppressed in dry PS II. The thermally activated onset of protein flexibility as monitored by QENS is found to be strictly correlated with the temperature-dependent increase of the electron transport efficiency from Q(A)(-) to QB (Garbers et al. (1998) Biochemistry 37, 11399-11404). Analogously, the freezing of protein mobility by dehydration in dry PS II appears to be responsible for the blockage of Q(A)(-) reoxidation by Q(B) at hydration values lower than 45% r.h. (Kaminskaya et al. (2003) Biochemistry 42, 8119-8132). Similar effects were observed for reactions of the water-oxidizing complex as outlined in the Discussion section.  相似文献   

10.
In order to examine the properties specific to the folded protein, the effect of the conformational states on protein dynamical transition was studied by incoherent elastic neutron scattering for both wild type and a deletion mutant of staphylococcal nuclease. The deletion mutant of SNase which lacks C-terminal 13 residues takes a compact denatured structure, and can be regarded as a model of intrinsic unstructured protein. Incoherent elastic neutron scattering experiments were carried out at various temperature between 10 K and 300 K on IN10 and IN13 installed at ILL. Temperature dependence of mean-square displacements was obtained by the q-dependence of elastic scattering intensity. The measurements were performed on dried and hydrated powder samples. No significant differences were observed between wild type and the mutant for the hydrated samples, while significant differences were observed for the dried samples. A dynamical transition at ∼ 140 K observed for both dried and hydrated samples. The slopes of the temperature dependence of MSD before transition and after transition are different between wild type and the mutant, indicating the folding induces hardening. The hydration water activates a further transition at ∼ 240 K. The behavior of the temperature dependence of MSD is indistinguishable for wild type and the mutant, indicating that hydration water dynamics dominate the dynamical properties.  相似文献   

11.
Neutron powder diffraction measurements of fully deuterated protein C-phycocyanin have been made at three temperatures, 295, 200, and 77 K, using dry and partially hydrated samples. The average coherent structure factors and the corresponding radial distribution functions d(r) are determined. The changes in d(r) functions observed in hydrated samples depend strongly on the level of hydration and most of these changes are due to water-protein interactions. At 0.365 gram D2O per gram of protein, the water crystallized into hexagonal ice at 200 K and below, but at 0.175 gram D2O per gram of protein, no crystallization of water was observed. At the higher hydration a peak appears in the radial distribution function which indicates that the average distance of the water molecule in the first hydration shell from the amino acid residues is 3.5 Å.  相似文献   

12.
Selected pairs of protonated ribosomal proteins were reconstituted into deuterated 50S subunits from Escherichia coli ribosomes. The rRNA of the deuterated ribosomal matrix was derived from cells grown in 76% D2O, the deuterated protein moiety from cells grown in 84% D2O. This procedure warrants that the coherent neutron scattering of deuterated proteins and rRNA is nearly the same and equals that of a D2O solution of approximately 90%. The neutron scattering is recorded in a reconstitution buffer containing approximately 90% D2O. The result is a significant improvement of the coherent signal:noise ratio over traditional methods; due to this dilute solutions can be used, thus preventing unfavorable inter-particle effects. From the diffraction pattern the distance between the mass centers of gravity of the two protonated proteins can be deduced. In this way, 50 distances between proteins within the large subunit have been determined which provide a basis for future models of the large ribosomal subunit describing the spatial distribution of the ribosomal proteins. A model containing seven ribosomal proteins is presented.  相似文献   

13.
The viscoelastic properties of solid samples (crystals, amorphous films) of hen egg white lysozyme, bovine serum albumin, and sperm whale myoglobin were studied in the temperature range of 100–300 K at different hydration levels. Decreasing the temperature was shown to cause a steplike increase in the Young's modulus of highly hydrated protein samples (with water content exceeding 0.3 g/g dry weight of protein) in the temperature range of 237–251 K, followed by a large increase in the modulus in the broad temperature interval of 240–130 K, which we refer to as a mechanical glass transition. Soaking the samples in 50% glycerol solution completely removed the steplike transition without significantly affecting the glass transition. The apparent activation energy determined from the frequency dependence of the glass-transition temperature was found to be 18 kcal/mol for wet lysozyme crystals. Lowering the humidity causes both the change of the Young's modulus in response to the transition and the activation energy to decrease. The thermal expansion coefficient of amorphous protein films also indicates the glass transition at 150–170 K. The data presented suggest that the glass transition in hydrated samples is located in the surface layer of proteins and related to the immobilization of the protein groups and strongly bound water.  相似文献   

14.
G E Ellis  K J Packer 《Biopolymers》1976,15(5):813-832
The nuclear magnetic spin-lattice and transverse relaxation processes for the 1H and 2D nuclei in purified elastin (ligamentum nuchae), exchanged and hydrated with excess D2O, have been studied in the temperature range 276°–340°K. The 2D relaxation results clearly show the presence of D2O (1) external to the bulk elastin sample, (2) in spaces within the bulk elastin, and (3) as an integral part of the protein on a molecular level. It is shown from these measurements that the protein on a molecular level. It is shown from these measurements that the water content of the protein itself changes from ~0.8 g D2O/g dry elastin at ~280°K to ~0.2 g D2O/g dry elastin at ~335°K, a decrease of 400%. The D2O content of the interfiber spaces decreases by less than 20% over the same temperature range. This fact throws considerable doubt on the validity of the values of β, the thermal expansion coefficient of elastin, used by other workers in discussion of the elastic mechanism in elastin. The elastin proton transverse relaxation shows the presence of three regions in elastin having different degrees of molecular mobility. These are assigned to protons associated with the crosslinks, a fairly mobile, hydrophobic, and low-water-content region, and a more mobile higher water-content region. The temperature variation of the relative proportions of these three regions is explained in terms of a hypothetical temperature-composition phase diagram in which the two mobile regions are represented as two partially miscible phases with different negative temperature coefficients of ‘solubility’ in water. The implications of these observations for current views of the nature of elastin are assessed. It is concluded that the spin-relaxation results are consistent with a multiphase structural model for elastin. An approximate sorption isotherm for the water/elastin system is reported and shows the relatively weak nature of the water/elastin interaction.  相似文献   

15.
Calorimetric measurements of absolute heat capacity have been performed for hydrated (11)S-globulin (0 < C(H(2)O) < 25%) and for lysozyme in a concentrated solution, both in the native and denatured states. The denaturation process is observed in hydrated and completely anhydrous proteins; it is accompanied by the appearance of heat capacity increment (Delta(N)(D)C(p)), as is the case for protein solutions. It has been shown that, depending on the temperature and water content, the hydrated denatured proteins can be in a highly elastic or glassy states. Glass transition is also observed in hydrated native proteins. It is found that the denaturation increment Delta(N)(D)C(p) in native protein, like the increment DeltaC(p) in denatured protein in glass transition at low water contents, is due to additional degrees of freedom of thermal motion in the protein globule. In contrast to the conventional notion, comparison of absolute C(p) values for hydrated denatured proteins with the C(p) values for denatured proteins in solution has indicated a dominant contribution of the globule thermal motion to the denaturation increment of protein heat capacity in solutions. The concentration dependence of denaturing heat absorption (temperature at its maximum, T(D), and thermal effect, DeltaQ(D)) and that of glass transition temperature, T(g), for (11)S-globulin have been studied in a wide range of water contents. General polymeric and specific protein features of these dependencies are discussed.  相似文献   

16.
Through elastic neutron scattering we measured the mean-square displacements of the hydrogen atoms of lysozyme embedded in a glucose-water glassy matrix as a function of the temperature and at various water contents. The elastic intensity of all the samples has been interpreted in terms of the double-well model in the whole temperature range. The dry sample shows an onset of anharmonicity at approximately 100 K, which can be attributed to the activation of methyl group reorientations. Such a protein intrinsic dynamics is decoupled from the external environment on the whole investigated temperature range. In the hydrated samples an additional and larger anharmonic contribution is provided by the protein dynamical transition, which appears at a higher temperature Td. As hydration increases the coupling between the protein internal dynamics and the surrounding matrix relaxations becomes more effective. The behavior of Td that, as a function of the water content, diminishes by approximately 60 K, supports the picture of the protein dynamics as driven by solvent relaxations. A possible connection between the protein dynamical response versus T and the thermal stability in glucose-water bioprotectant matrices is proposed.  相似文献   

17.
In this work we investigate the dynamic properties of hemoglobin in glycerolD(8)/D(2)O solution using incoherent elastic (ENS) and quasi-elastic (QENS) neutron scattering. Taking advantage of complementary energy resolutions of backscattering spectrometers at ILL (Grenoble), we explore motions in a large space-time window, up to 1 ns and 14 A; moreover, in order to cover the harmonic and anharmonic protein dynamics regimes, the elastic experiments have been performed over the wide temperature interval of 20-300 K. To study the dependence of the measured dynamics upon the protein quaternary structure, both deoxyhemoglobin (in T quaternary conformation) and carbonmonoxyhemoglobin (in R quaternary conformation) have been investigated. From the ENS data the mean square displacements of the non-exchangeable hydrogen atoms of the protein and their temperature dependence are obtained. In agreement with previous results on hydrated powders, a dynamical transition at about 220 K is detected. The results show interesting differences between the two hemoglobin quaternary conformations, the T-state protein appearing more rigid and performing faster motions than the R-state one; however, these differences involve motions occurring in the nanosecond time scale and are not detected when only faster atomic motions in the time scale up to 100 ps are investigated. The QENS results put in evidence a relevant Lorentzian quasi-elastic contribution. Analysis of the dependence of the Elastic Incoherent Structure Factor (EISF) and of the Lorentzian halfwidth upon the momentum transfer suggests that the above quasi-elastic contribution arises from the diffusion inside a confined space, values of confinement radius and local diffusion coefficient being compatible with motions of hydrogen atoms of the amino acid side chains. When averaged over the whole range of momentum transfer the QENS data put in evidence differences between deoxy and carbonmonoxy hemoglobin and confirm the quaternary structure dependence of the protein dynamics in the nanosecond time scale.  相似文献   

18.
The crystallographic normal mode refinements of myoglobin at a wide range of temperature from 40 K to 300 K were carried out to study the temperature dependence of the internal atomic fluctuations. The refinement method decomposes the mean square displacement from the average position, (deltar2), into the contributions from the internal degrees of freedom and those from the external degrees of freedom. The internal displacements show linear temperature dependence as (deltar2)=alphaT+beta, throughout the temperature range measured here, and exhibit no obvious change in the slope alpha at the dynamical transition temperature (Tc=ca. 180 K). The slope alpha is practically the same as the value predicted theoretically by normal mode analysis. Such linear dependence is considered to be due to the following reason. The crystallographic Debye-Waller factor represents the static distribution caused by convolution of temperature-dependent normal mode motions and a temperature-independent set of the conformational substates. In contrast, M?ssbauer absorption spectroscopy shows a clear increase in the gradient alpha at Tc. This difference from X-ray diffraction originates from the incoherent nature of the M?ssbauer effect together with its high-energy resolution, which yields the self-correlation, and the temporal behavior of individual Fe atoms in the myoglobin crystal.  相似文献   

19.
The dynamics of lysozyme in the picosecond timescale has been studied when it is in dry and hydrated powder form and when it is embedded in glycerol, glycerol–water, glucose and glucose–water matrices. The investigation has been undertaken through elastic neutron scattering technique on the backscattering spectrometer IN13. The dynamics of dry powder and embedded-in-glucose lysozyme can be considered purely vibrational up to 100 K, where the onset of an anharmonic contribution takes place. This contribution can be attributed to the activation of methyl group reorientations and is described with an Arrhenius trend. An additional source of anharmonic dynamics appears at higher temperatures for lysozyme in hydrated powders and embedded in glycerol, glycerol–water and glucose–water matrices. This second process, also represented with an Arrhenius trend, corresponds to the so-called protein dynamical transition. Both the temperature where such a transition takes place and the magnitude of the protein mean square displacements depend on the environment. The dynamical response of the protein to temperature is put in relationship with its thermal stability.  相似文献   

20.
Inelastic neutron scattering spectroscopy is used to investigate dynamic changes in lysozyme powder at two different low D2O hydrations (0.07g D2O/g protein and 0.20 g D2O/g protein). In the higher hydration sample, the inelastic scattering between 0.8 and 4.0 cm-1 energy transfer is increased and the elastic scattering is decreased. The decreased elastic scattering suggests increased atomic amplitudes of motion and the increased 0.8 to 4.0 cm-1 scattering suggests increased motions in this frequency range. Comparison with normal mode models of lysozyme dynamics shows that the inelastic difference occurs in the frequency region predicted for the lowest frequency, largest amplitude, global modes of the molecular [M. Levitt, C. Sander and P.S. Stern, J. Mol. Biol. 181, 423 (1985). B. Brooks and M. Karplus, Proc. Natl. Acad. Sci (U.S.A) 82, 4995 (1985), R.E. Bruccoleri, M. Karplus and J.A. McCammon, Biopolymers 25 1767 (1986)]. Our results are consistent with a model in which an increased number of low frequency global modes are present in the higher hydrated sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号