首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CHLORIDE TRANSPORT IN ENTEROMORPHA INTESTINALIS (L.) LINK   总被引:2,自引:2,他引:0  
  相似文献   

2.
3.
The very common green seaweeds Enteromorpha intestinalis (L.) Nees and E. compressa (L.) Nees are important fouling organisms and have commonly been used as indicators of eutrophication, but their taxonomic status is problematic. The genus presents extreme difficulties because there is wide intraspecific variation in morphology, but morphological differences between species are small and difficult to detect. In this study, molecular data were used in parallel with morphological characters to resolve the taxonomic problems. Phylogenetic analysis of sequences of the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene distinguished two groups of samples, which were identified by morphological characters as E. compressa (branched) and E. intestinalis (normally unbranched). There was a low level of sequence divergence within each group of samples, but divergence between groups was as great as that between either of the two species and the outgroup E. prolifera. Clades representing E. compressa and E. intestinalis were also found in analyses of an independent molecular data set, chloroplast DNA restriction fragment length polymorphisms (RFLPs). Enteromorpha intestinalis and E. compressa represent two distinct, genetically divergent species. Reinterpretation of published studies shows that these species are reproductively isolated. However, E. compressa and E. intestinalis are sometimes very difficult to distinguish from each other and could be regarded as cryptic species. The presence or absence of branching was the most useful character distinguishing these two species, but there was an element of ambiguity because low salinity or salinity shock can induce branching in E. intestinalis. If environmental factors such as salinity are taken into account, branching can be used to identify the great majority of thalli correctly. This study therefore provides a basis for identifying the two most important marine fouling macroalgae and for their use in environmental monitoring and experimentation. Typification of these two Linnaean species showed that current usage of the names accords with the lectotype and protologue of both species. Samples that resembled E. usneoides did not form a clade in any of the trees, and constraining the data to support the monophyly of this group incurred a penalty. Enteromorpha usneoides appears to be an ecotype of E. compressa.  相似文献   

4.
5.
The intertidal macroalga Enteromorpha compressa showed the ability to use HCO3? as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural seawater concentration of this carbon form was saturating, additional CO2 above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO2 during mild desiccation. Based on carbon fixing enzyme activities and Ci pulsechase incorporation patterns, it was found that Enteromorpha is a C3 plant. However, this alga did not show O2 inhibited photosynthetic rates at natural seawater Ci conditions. It is suggested that such a C4- like gas exchange response is due to the HCO3? utilization system concentrating CO2 intracellularly, thus alleviating apparent photorespiration.  相似文献   

6.
Although an apoplastic pathway (the so‐called bypass flow) is implicated in the uptake of Na+ by rice growing in saline conditions, the point of entry of this flow into roots remains to be elucidated. We investigated the role of lateral roots in bypass flow using the tracer trisodium‐8‐hydroxy‐1,3,6‐pyrenetrisulphonic acid (PTS) and the rice cv. IR36. PTS was identified in the vascular tissue of lateral roots using both epifluorescence microscopy and confocal laser scanning microscopy. Cryo‐scanning electron microscopy and epifluorescence microscopy of sections stained with berberine‐aniline blue revealed that the exodermis is absent in the lateral roots. We conclude that PTS can move freely through the cortical layers of lateral roots, enter the stele and be transported to the shoot via the transpiration stream.  相似文献   

7.
8.
韩大英  刘北英 《生理学报》1990,42(6):562-570
采用离子选择电极测量羊浦肯野纤维细胞膜内钠离子活度(~(ai)N_a),细胞间钾离子活度(a~ok)及细胞膜电位(v_m),观察不同浓度低钠,无钙液对其影响,在无钙低钠液中,细胞内Na~+逐出,α~iNa 降低,其变化速率,幅值与[Na]_o 相关,同时也受细胞 a~iNa 初始水平(aiNa(o))的影响。aiNa 下降6min 时的稳态水平与[Na]_o 呈直线正相关,这些结果表明,[Na]_o 降低时,细胞膜钠泵活动加强,细胞内 Na~+逐出增加,其最终结果是使 Na+跨膜梯度维持相对稳定,因而可以认为是 Na~+跨膜梯度而不是单纯的细胞内 Na~+控制膜钠泵活动。在低 Na~+液引起细胞内 Na~+主动逐出增加的同时,细胞膜出现超极化,[Na]_o 愈低,膜超极化程度愈高,从低钠液引起的 a~i_(Na),V_m,α~o_k 变化之间的时程关系看,膜超极化主要由加大的外向泵电流引起,同时发生的细胞间 K~+浓度变化对其也有一定影响。  相似文献   

9.
The chlorophyte macroalgae Ulva fenestrata (Postels and Ruprecht) and Enteromorpha intestinalis (Linnaeus) Link. were grown under various nutrient regimes in indoor semi-continuous and batch cultures. Tissue nitrogen contents ranged from 1.3–5.4% N (dry wt), whereas tissue P ranged from 0.21–0.56% P (dry wt). Growth in low nitrogen medium resulted in N:P ratios of 5–8, whereas growth in high nitrogen medium resulted in N:P ratios of 21–44. For U. fenestrata, tissue N:P < 16 was indicative of N-limitation. Tissue N:P 16–24 was optimal for growth and tissue N:P > 24 was indicative of P-limitation. Growth of U. fenestrata was hyperbolically related to tissue N but linearly related to tissue P. Phosphorus-limited U. fenestrata maintained high levels of tissue N, but N-limited algae became depleted of P. For E. intestinalis, tissue N remained at maximum levels during P-limitation whereas tissue P decreased to about 85% of maximal levels during N-limitation. Growth rates for U. fenestrata decreased faster during P-limitation than during N-limitation. Simultaneously, tissue P was depleted faster than tissue N. Our results suggest that comparing tissue N and P of macroalage grown in batch cultures is useful for monitoring the nutritional status of macroalgae.  相似文献   

10.
11.
Enteromorpha muscoides (Clemente y Rubio) Cremades and E. clathrata Roth (Greville) are morphologically variable species that can easily be distinguished from other Enteromorpha species but not from each other. The key morphological character separating the two species is the presence or absence of spine-like branches: E. muscoides has small spine-like branches throughout the thallus, whereas E. clathrata lacks spines. The spiny branches in E. muscoides are not as obvious in summer as in winter, so summer samples may be difficult to distinguish from those of E. clathrata. In this study, molecular data were used to investigate whether these two species, as defined by morphological characters, might be conspecific. The sequences of the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene differed by 0%–0.6% between all samples of both E. muscoides and E. clathrata. Phylogenetic analysis of these sequences in an alignment with 13 other representatives of both Enteromorpha and Ulva showed that this highly supported monophyletic E. muscoides / E. clathrata clade is separated by long branch lengths from other Enteromorpha and Ulva clades. Based on these results, we suggest that Enteromorpha muscoides (Clemente y Rubio) Cremades and Enteromorpha clathrata Roth (Greville) are conspecific, with the older name E. muscoides taking priority.  相似文献   

12.
Methanol extracts from the alga Enteromorpha compressa (L.) Grev. contain substances which inhibit the elongation of Lepidium roots. Chromatographic separation of the inhibiting substances revealed that one of the inhibitory zones of the chromatograms had properties of the so-called inhibitor β. Neither abscisic acid (ABA) nor lunularic acid proved to be responsible for the growth-inhibiting property of this zone. Moreover, the extracts contain substances which promote the elongation of Avena coleoptile segments. One of these substances could be tentatively identified as indole-3-acetic acid by thin-layer and gas-liquid chromatography. (In addition to indole-3-acetic acid a second growth-promoting factor with the properties of the so-called accelerator α could be detected.)  相似文献   

13.
14.
15.
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion   总被引:3,自引:2,他引:3  
The influence of NaCl and Na2SO4 on growth of two maize cultivars (Zea mays cv. Pioneer 3906 and cv. Across 8023) differing in Na+ uptake was investigated in two green-house experiments. Na+ treatment with different accompanying anions (Cl?/SO42?) showed that ion toxicity was caused by Na+. While shoot growth of the two cultivars was markedly affected by salt in comparison to the control during the first 2–3 weeks, there were only slight differences between the cultivars. The shoot Ca2+ concentration was reduced in both cultivars, and the youngest leaves contained an even lower concentration compared with the rest of the shoot. During this first phase, Across 8023 tended to have higher concentrations of Ca2+ than Pioneer 3906. The Na+-excluding cultivar Pioneer 3906 showed continuous, although reduced, growth compared with the control, while the Na+ concentration in the shoot decreased until flowering. Cultivar Across 8023 accumulated Na+ until flowering: the reduction in the growth of stressed plants was greater than that for Pioneer 3906. Leaves of cultivar Across 8023 showed clear toxic symptoms, while those of the more salt-tolerant cultivar Pioneer 3906 did not. It is concluded that Na+ exclusion contributes to the salt tolerance of maize.  相似文献   

16.
Sodium chloride reduces the growth of rice seedlings, which accumulate excessive concentrations of sodium and chloride ions in their leaves. In this paper, we describe how silicon decreases transpirational bypass flow and ion concentrations in the xylem sap in rice (Oryza sativa L.) seedlings growing under NaCl stress. Salt (50 mM NaCl) reduced the growth of shoots and roots: adding silicate (3 mM) to the saline culture solution improved the growth of the shoots, but not roots. The improvement of shoot growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. The net transport rate of Na from the root to shoot (expressed per unit of root mass) was also decreased by added silicate. There was, however, no effect of silicate on the net transport of potassium. Furthermore, in salt-stressed plants, silicate did not decrease the transpiration, and even increased it in seedlings pre-treated with silicate for 7 d prior to salt treatment, indicating that the reduction of sodium uptake by silicate was not simply through a reduction in volume flow from root to shoot. Experiments using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, showed that silicate dramatically decreased transpirational bypass flow in rice (from about 4.2 to 0.8%), while the apparent sodium concentration in the xylem, which was estimated indirectly from the flux data, decreased from 6.2 to 2.8 mM. Direct measurements of the concentration of sodium in xylem sap sampled using Philaenus spumarius confirmed that the apparent reduction was not a consequence of sodium recycling. X-ray microanalysis showed that silicon was deposited in the outer part of the root and in the endodermis, being more obvious in the latter than in the former. The results suggest that silicon deposition in the exodermis and endodermis reduced sodium uptake in rice (Oryza sativa L.) seedlings under NaCl stress through a reduction in apoplastic transport across the root.  相似文献   

17.
Rice is relatively sensitive to salinity and is classified as a silicon accumulator. There have been reports that silicon can reduce sodium uptake in crop grasses in saline conditions, but the mechanism by which silicon might alleviate salinity damage is unclear. We report on the effects of silicon on growth, gas exchange and sodium uptake in rice genotypes differing in salt tolerance. In non-saline media there were no effects of supplementary silicate upon shoot fresh or dry weight or upon root dry weight, indicating that the standard culture solution was not formally deficient with respect to silicon. Plants grown with supplementary silicate had slightly, but significantly, shorter leaves than plants grown in a standard culture solution. Salinity reduced growth and photosynthetic gas exchange. Silicate supplementation partly overcame the reduction in growth and net photosynthesis caused by salt. This amelioration was correlated with a reduction in sodium uptake. Silicate supplementation increased the stomatal conductance of salt-treated plants, showing that silicate was not acting to reduce sodium uptake via a reduction in the transpiration rate. Silicate reduced both sodium transport and the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). This implies that the mode of action of silicate was by partial blockage of the transpirational bypass flow, the pathway by which a large proportion of the uptake of sodium in rice occurs. Mechanisms by which silicate might reduce the transpirational bypass flow directly are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号