首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have identified a new murine transforming growth factor beta superfamily member, growth-differentiation factor 15 (Gdf15), that is expressed at highest levels in adult liver. As determined by Northern analysis, the expression of Gdf15 in liver was rapidly and dramatically up-regulated following various surgical and chemical treatments that cause acute liver injury and regeneration. In situ hybridization analysis revealed distinct patterns of Gdf15 mRNA localization that appeared to reflect the known patterns of hepatocyte injury in each experimental treatment. In addition, treatment of two hepatocyte-like cell lines with either carbon tetrachloride or heat shock induced Gdf15 mRNA expression, indicating that direct cellular injury can induce Gdf15 expression in the absence of other cell types, such as inflammatory cells. In order to investigate the potential functions of Gdf15, we created Gdf15 null mice by gene targeting. Homozygous null mice were viable and fertile. Despite the dramatic regulation of Gdf15 expression observed in the partial-hepatectomy and carbon tetrachloride injury models, we found no differences in the injury responses between homozygous null mutants and wild-type mice. Our findings suggest either that Gdf15 does not have a regulatory role in liver injury and regeneration or that Gdf15 function within the liver is redundant with that of other signaling molecules.  相似文献   

3.
4.
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior–posterior (A–P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A–P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11−/− mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.  相似文献   

5.
Mice deficient in growth differentiation factor 11 (GDF11) signaling display anterior transformation of axial vertebrae and truncation of caudal vertebrae. However, the in vivo molecular mechanisms by which GDF11 signaling regulates the development of the vertebral column have yet to be determined. We found that Gdf11 and Acvr2b mutants are sensitive to exogenous RA treatment on vertebral specification and caudal vertebral development. We show that diminished expression of Cyp26a1, a retinoic acid inactivating enzyme, and concomitant elevation of retinoic acid activity in the caudal region of Gdf11−/− embryos may account for this phenomenon. Reduced expression or function of Cyp26a1 enhanced anterior transformation of axial vertebrae in wild-type and Acvr2b mutants. Furthermore, a pan retinoic acid receptor antagonist (AGN193109) could lessen the anterior transformation phenotype and rescue the tail truncation phenotype of Gdf11−/− mice. Taken together, these results suggest that GDF11 signaling regulates development of caudal vertebrae and is involved in specification of axial vertebrae in part by maintaining Cyp26a1 expression, which represses retinoic acid activity in the caudal region of embryos during the somitogenesis stage.  相似文献   

6.
7.
8.
The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation.  相似文献   

9.
10.
11.
12.
13.
14.
The formation of the anterior visceral endoderm (AVE) in the pre-gastrulation mouse embryo represents a crucial event in patterning of the anterior-posterior axis. Here, we show that the transforming growth factor beta (Tgfbeta) family member Gdf3 (growth-differentiation factor 3), a close relative of Xenopus Vg1, resembles the Tgfbeta ligand Nodal in both its signaling activity and its role in AVE formation in vivo. Thus, in cell culture, Gdf3 signaling requires the EGF-CFC co-receptor Cripto and can be inhibited by Lefty antagonists. In Xenopus embryos, Gdf3 misexpression results in secondary axis formation, and induces morphogenetic elongation and mesendoderm formation in animal caps. In mouse embryos, Gdf3 is expressed in the inner cell mass and epiblast, and null mutants frequently exhibit abnormal formation or positioning of the AVE. This phenotype correlates with defects in mesoderm and definitive endoderm formation, as well as abnormal Nodal expression levels. Our findings indicate that Gdf3 acts in a Nodal-like signaling pathway in pre-gastrulation development, and provide evidence for the functional conservation of Vg1 activity in mice.  相似文献   

15.
16.
Growth differentiation factor 9 (GDF9) is preferentially expressed in oocytes and is essential for female fertility. To identify regulatory elements that confer high-level expression of GDF9 in the ovary but repression in other tissues, we generated transgenic mice in which regions of the Gdf9 locus were fused to reporter genes. Two transgenes (-10.7/+5.6mGdf9-GFP) and (-3.3/+5.6mGdf9-GFP) that contained sequences either 10.7 or 3.3 kb upstream and 5.6 kb downstream of the Gdf9 initiation codon demonstrated expression specifically in oocytes, thereby mimicking endogenous Gdf9 expression. In contrast, transgenes -10.7mGdf9-Luc and -3.3mGdf9-Luc, which lacked the downstream 5.6-kb region, demonstrated reporter expression not only in oocytes but also high expression in male germ cells. This suggests that the downstream 5.6-kb sequence contains a testis-specific repressor element and that 3.3 kb of 5'-flanking sequence contains all the cis-acting elements for directing high expression of Gdf9 to female (and male) germ cells. To define sequences responsible for oocyte expression of Gdf9, we analyzed sequences of Gdf9 genes from 16 mammalian species. The approximately 400 proximal base pairs upstream of these Gdf9 genes are highly conserved and contain a perfectly conserved E-box (CAGCTG) sequence. When this 400-bp region was placed upstream of a luciferase reporter (-0.4mGdf9-Luc), oocyte-specific expression was observed. However, a similar transgene construct (-0.4MUT-mGdf9-Luc) with a mutation in the E-box abolished oocyte expression. Likewise, the presence of an E-box mutation in a longer construct (-3.3MUT-mGdf9-Luc) abolished expression in the ovary but not in the testis. These observations indicate that the E-box is a key regulatory sequence for Gdf9 expression in the ovary.  相似文献   

17.
18.
19.
20.
Alternative splicing of the mu opioid receptor genes to create multiple mu receptor subtypes has been demonstrated in animals and humans. Previously, we identified a number of C-terminal variants in mice, rats and human, followed by several N-terminal variants associated with a new upstream exon in mice (exon 11). Behavioral studies in exon 11 knockout mice suggest an important role for the exon 11 variants in the analgesic actions of heroin and morphine-6β-glucuronide, but not morphine or methadone. We now have identified a homologous human exon 11 and three similar human exon 11-associated variants, suggesting conservation of exon 11 and its associated variants across species. hMOR-1i has an additional 93 amino acids at the tip of the N-terminus but is otherwise identical to hMOR-1. When expressed in Chinese hamster ovary cells, the additional 93 amino acids in hMOR-1i had little effect on opioid binding, but significantly altered agonist-induced G-protein activation. hMOR-1G1 and hMOR-1G2 predicted six transmembrane domain variants, similar to those seen in mice. The regional expression of these exon 11-associated variants, as determined by RT-PCR, varied markedly, implying region-specific alternative splicing. The presence of exon 11-associated variants in humans raises questions regarding their potential role in heroin and morphine-6β-glucuronide actions in people as they do in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号