首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. The aims were (i) to evaluate ASP response under insulin-resistant conditions and (ii) to identify mechanisms of ASP resistance using 3T3-L1 adipocytes and preadipocytes. Overnight incubation with palmitate (PAL) or oleate (OLE) induced dose-dependent inhibition of ASP-stimulated glucose transport in adipocytes (198 +/- 18% +ASP, 100 +/- 4% basal, 131 +/- 14% + ASP + 1 mmol/L PAL) and preadipocytes (287 +/- 21% + ASP, 100 +/- 4% basal, 109 +/- 13% + ASP + 1 mmol/L PAL). In adipocytes, dose-dependent maximal C5L2 mRNA decreases were -41 +/- 15% and -82 +/- 2%, with decreased cell-surface C5L2 of -55 +/- 12% and -39 +/- 9% (1 mmol/L PAL and OLE, respectively) with no change in preadipocytes. Adipocytes treated with PAL or OLE evidenced inhibition of ASP stimulation of G proteins: Gbeta (-50%), Galphaq/11 (-50%) and protein kinase C: PKCalpha-P (-52%), PKCzeta-P (-43%). Fatty acid-induced ASP resistance via C5L2 may contribute to altered adipose tissue function and obesity/insulin resistance phenotype in humans.  相似文献   

2.
C5L2 is a functional receptor for acylation-stimulating protein   总被引:9,自引:0,他引:9  
C5L2 binds acylation-stimulating protein (ASP) with high affinity and is expressed in ASP-responsive cells. Functionality of C5L2 has not yet been demonstrated. Here we show that C5L2 is expressed in human subcutaneous and omental adipose tissue in both preadipocytes and adipocytes. In mice, C5L2 is expressed in all adipose tissues, at levels comparable with other tissues. Stable transfection of human C5L2 cDNA into HEK293 cells results in ASP stimulation of triglyceride synthesis (TGS) (193 +/- 33%, 5 microM ASP, p < 0.001, where basal = 100%) and glucose transport (168 +/- 21%, 10 microM ASP, p < 0.001). C3a similarly stimulates TGS (163 +/- 12%, p < 0.001), but C5a and C5a des-Arg have no effect. The ASP mechanism is to increase Vmax of glucose transport (149%) and triglyceride (TG) synthesis activity (165%) through increased diacylglycerolacyltransferase activity (200%). Antisense oligonucleotide down-regulation of C5L2 in human skin fibroblasts decreases cell surface C5L2 (down to 54 +/- 4% of control, p < 0.001, comparable with nonimmune background). ASP response is coordinately lost (basal TGS = 14.6 +/- 1.6, with ASP = 21.0 +/- 1.4 (144%), with ASP + oligonucleotides = 11.0 +/- 0.8 pmol of TG/mg of cell protein, p < 0.001). In mouse 3T3-L1 preadipocytes, antisense oligonucleotides decrease C5L2 expression to 69.5 +/- 0.5% of control, p < 0.001 (comparable with nonimmune) with a loss of ASP stimulation (basal TGS = 22.4 +/- 2.9, with ASP = 39.6 +/- 8.8 (177%), with ASP + oligonucleotides = 25.3 +/- 3.0 pmol of TG/mg of cell protein, p < 0.001). C5L2 down-regulation and decreased ASP response correlate (r = 0.761, p < 0.0001 for HSF and r = 0.451, p < 0.05 for 3T3-L1). In HEK-hC5L2 expressing fluorescently tagged beta-arrestin, ASP induced beta-arrestin translocation to the plasma membrane and formation of endocytic complexes concurrently with increased phosphorylation of C5L2. This is the first demonstration that C5L2 is a functional receptor, mediating ASP triglyceride stimulation.  相似文献   

3.
Acylation-stimulating protein (ASP) and interaction with its receptor C5L2 influences adipocyte metabolism. We examined insulin resistance and differentiation-mediated regulation of C5L2 and the mechanistic impact on both C5L2 cell-surface protein and ligand binding to the receptor. C5L2 mRNA increased 8.7-fold with differentiation in 3T3-L1 cells (p < 0.0001) by day 9. In preadipocytes, insulin and dexamethasone increased C5L2 mRNA (1 micromol/L insulin resulted in a 2.6-fold increase, p < 0.01; 10 nmol/L dexamethasone resulted in a 17.9-fold increase, p < 0.01) and C5L2 cell-surface protein (100 nmol insulin resulted in a 2.7-fold increase, p < 0.001; 10 nmol/L dexamethasone resulted in a 2.8-fold increase, p < 0.001). In adipocytes, 100 nmol/L insulin increased C5L2 mRNA and ASP binding (respectively, 1.3-fold, p < 0.01; and 2.4-fold, p < 0.05). Dexamethasone decreased ligand binding (-60%, p < 0.02) without changing mRNA. Tumor necrosis factor alpha decreased C5L2 mRNA (-88% in preadipocytes and -38% in adipocytes, p < 0.001), C5L2 cell-surface protein (-53% in preadipocytes, p < 0.0001), and ASP binding (-60% and -49% in, respectively, preadipocytes and adipocytes, p < 0.05). Conversely, 1 micromol/L and 10 nmol/L rosiglitazone increased, respectively, C5L2 mRNA (9.3-fold, p < 0.0001) and ASP binding (2.4-fold, p < 0.05). Thus, C5L2 mRNA increases with differentiation, insulin, and thiazolidinedione treatment, and decreases with tumor necrosis factor alpha, all of which results in functional changes in ASP-C5L2 response and may have implications for human metabolism.  相似文献   

4.
In the past few years, there has been increasing interest in the production and physiological role of acylation-stimulating protein (ASP), identical to C3adesArg, a product of the alternative complement pathway generated through C3 cleavage. Recent studies in C3 (-/-) mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage. The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into adipocytes, then cultured in different media such as serum-free (SF), Dulbecco's modified Eagle's medium (DMEM)/F12 + 10% fetal calf serum (FBS), and at varying concentrations of chylomicrons and insulin + chylomicrons up to 48 h. ASP production in SF and DMEM/F12 + 10% FBS was compared. Chylomicrons stimulated ASP production in a concentration- and time-dependent manner. By contrast, chylomicron treatment had no effect on the production of C3, the precursor protein of ASP, which was constant over 48 h. Addition of insulin (100 nM) to a low-dose of chylomicrons (100 μg TG/ml) significantly increased ASP production compared with chylomicrons alone at 48 h (P < 0.001). Furthermore, addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P < 0.05, P < 0.001, respectively). Overall, the proportion of ASP to C3 remained constant, indicating no change in the ratio of C3 cleaved to generate ASP. This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay. The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response, and provides a strategy for further studies on ASP production and function.  相似文献   

5.
促酰化蛋白(ASP)诱导3T3-L1前脂肪细胞分化   总被引:9,自引:0,他引:9  
促酰化蛋白 (ASP)代替经典激素“鸡尾酒”诱导法中胰岛素 ,通过形态学观察、油红染色分化百分比测定、脂肪细胞甘油三酯合成率和甘油三酯总量测定 ,并与经典激素“鸡尾酒”法诱导前脂肪细胞分化情况比较 ,探讨ASP是否具有诱导 3T3 L1前脂肪细胞分化作用 .ASP组诱导分化第 6d ,3T3 L1前脂肪细胞变大、变圆 ,出现大量脂肪滴 ,形态由前脂肪细胞向成熟脂肪细胞转变 ;随着诱导分化时间延长 ,胞浆中脂滴进一步积累 .分化 9d时 ,3T3 L1前脂肪细胞分化完全 .油红染色结果显示 ,ASP组分化率很高 (85 % ) ,与胰岛素组分化率 (90 % )相似 ,明显高于IBMX +DEX组 (4 0 % ) .ASP不仅促进 3T3 L1前脂肪细胞形态向成熟脂肪细胞转化 ,同时促进细胞中甘油三酯的合成和积累 .ASP组诱导分化第 3d时 ,脂肪细胞甘油三酯合成率明显高于对照组和IBMX +DEX组 ,但仍低于胰岛素组 ;在分化第 6d和第 9d时 ,ASP组甘油三酯合成率进一步升高 ,与对照组和IBMX +DEX组相比差异有极显著性 ,与胰岛素组相比无显著性差异 .ASP组诱导分化 3d时 ,脂肪细胞中甘油三酯总量明显高于对照组和IBMX +DEX组 ;分化 6d和 9d时 ,甘油三酯总量进一步升高 ,与对照组和IBMX +DEX组相比差异有极显著性 ,而与胰岛素组相比无显著性差异 .结果表明 ,新型脂源性激  相似文献   

6.
The metabolism of testosterone (TEST), androstenedione (AD) and progesterone (PROG) was assessed in hepatic microsomal fractions from male sheep. Rates of total hydroxylation of each steroid were lower in sheep liver than in microsomes isolated from untreated male rat, guinea pig or human liver, 6 beta-Hydroxylation was the most important pathway of biotransformation of each of the three steroids (0.80, 0.89 and 0.43 nmol/min/mg protein for TEST, AD and PROG, respectively). Significant minor metabolites from TEST were the 2 beta-, 15 beta- and 15 alpha-alcohols (0.19, 0.22 and 0.17 nmol/min/mg microsomal protein, respectively). Apart from the 6 beta-hydroxysteroid, only the 21-hydroxy derivative was formed from PROG at a significant rate (0.27 nmol/min/mg protein). The 6 beta-alcohol was the only metabolite formed from AD at a rate greater than 0.1 nmol/min/mg protein. Antisera raised in rabbits to several rat hepatic microsomal P450s were assessed for their capacity to modulate sheep microsomal TEST hydroxylation. Anti-P450 IIIA isolated from phenobarbital-induced rat liver effectively inhibited TEST hydroxylation at the 2 beta-, 6 beta-, 15 alpha- and 15 beta-positions (by 31-56% when incubated with microsomes at a ratio of 5 mg IgG/mg protein). IgG raised against rat P450 IIC11 and IIB1 inhibited the formation of some of the minor hydroxysteroid metabolites but did not decrease the rate of TEST 6 beta-hydroxylation. Western immunoblot analysis confirmed the cross-reactivity of anti-rat P450 IIIA with an antigen in sheep hepatic microsomes; anti-IIC11 and anti-IIB1 exhibited only weak immunoreactivity with proteins in these fractions. Considered together, the present findings indicate that, as is the case in many mammalian species, 6 beta-hydroxylation is the principal steroid biotransformation pathway of male sheep liver. Evidence from immunoinhibition and Western immunoblot experiments strongly implicate the involvement of a P450 from the IIIA subfamily in ovine steroid 6 beta-hydroxylation.  相似文献   

7.
IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes.   总被引:18,自引:0,他引:18  
The expression and secretion of IGF-I and IGFBP-3 were investigated in cultured human preadipocytes and in in vitro differentiated adipocytes derived from human subcutaneous adipose tissue under chemically defined culture conditions. Human preadipocytes expressed mRNAs for IGF-I and IGFBP-3 and secreted the corresponding proteins into the culture medium as measured by sensitive radioimmunoassays. In human adipocytes; specific mRNA-expression was comparable to that found in preadipocytes, but IGF-I secretion was increased 10-fold (3.87 +/- 0.69 vs. 0.41 +/- 0.11 ng/ml/10(6) cells/48 hrs, p < 0.05) and IGFBP-3 secretion 2.5-fold (7.34+/-1.15 vs. 3.27+/-0.38 ng/ml/10(6) cells/48 hrs, p<0.05) in the presence of adipogenic medium probably resulting in an increase of unbound IGF-I. Under serum-free, chemically defined conditions human growth hormone (hGH) and insulin were found to be positive regulators and cortisol was found to be a negative regulator of IGF-I and IGFBP-3 secretion in preadipocytes. In cultured human adipocytes, hGH showed no effect on IGF-I and IGFBP-3 secretion, whereas insulin stimulated and cortisol inhibited the secretion of both proteins. We conclude that IGF-I and IGFBP-3 may not only exert their actions in human adipose tissue via circulation, but also in an auto/paracrine way.  相似文献   

8.
9.
Targeting the signaling pathway of acylation stimulating protein   总被引:5,自引:0,他引:5  
Acylation stimulating protein (ASP; C3adesArg) stimulates triglyceride synthesis (TGS) and glucose transport in preadipocytes/adipocytes through C5L2, a G-protein-coupled receptor. Here, ASP signaling is compared with insulin in 3T3-L1 cells. ASP stimulation is not Galpha(s) or Galpha(i) mediated (pertussis and cholera toxin insensitive), suggesting G(alphaq) as a candidate. Phospholipase C (PLC) is required, because the Ca(2+) chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and the PLC inhibitor U73122 decreased ASP stimulation of TGS by 93.1% (P < 0.0.001) and 86.1% (P < 0.004), respectively. Wortmannin and LY294002 blocked ASP effect by 69% (P < 0.001) and 116.1% (P < 0.003), respectively, supporting phosphatidylinositol 3-kinase (PI3K) involvement. ASP induced rapid, transient Akt phosphorylation (maximal, 5 min; basal, 45 min), which was blocked by Akt inhibition, resembling treatment by insulin. Downstream of PI3K, mamalian target of rapaycin (mTOR) is required for insulin but not ASP action. By contrast, both ASP and insulin activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK(1/2)) pathway, with rapid, pronounced increases in ERK(1/2) phosphorylation, effects partially blocked by PD98059 (64.7% and 65.9% inhibition, respectively; P < 0.001). Time-dependent (maximal, 30 min) transient calcium-dependent phospholipase A(2) (cPLA(2))(-Ser505) phosphorylation (by MAPK/ERK(1/2)) was demonstrated by Western blot analysis. ASP signaling involves sequential activation of PI3K and PLC, with downstream activation of protein kinase C, Akt, MAPK/ERK(1/2), and cPLA(2), all of which leads to an effective and prolonged stimulation of TGS.  相似文献   

10.
Objective: To investigate the ability of 1,25(OH)2D3 (D) and genistein (G), alone and in combination, to inhibit adipogenesis and induce apoptosis in 3T3‐L1 adipocytes. Methods and Procedures: 3T3‐L1 preadipocytes and mature adipocytes were incubated with various concentrations of D and G, alone and in combination, for 48 h. Viability was determined using the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay. Post‐confluent preadipocytes were incubated with D and G for up to 6 days during adipogenesis and lipid content was quantified by Nile Red dye; apoptosis was quantified by measurement of single‐stranded DNA. Expression of adipocyte‐specific proteins and VDR was analyzed by western blotting. Results: Combining D and G did not cause an enhanced effect on cell viability in either preadipocytes or mature adipocytes. In maturing preadipocytes, D at 0.5 nmol/l (D0.5) increased apoptosis by 47 ± 10.25% (P < 0.05) and inhibited lipid accumulation by 28 ± 10% (P < 0.001), while G at 25 μmol/l (G25) had no significant effect. However, D+G caused an enhanced apoptosis by 136 ± 12.6% (P < 0.001) and enhanced inhibition of lipid accumulation by 82.46 ± 2.95% (P < 0.001). Similarly, D0.5 alone decreased adipose‐specific gene 422 (aP2) expression to 34.2 ± 2.3% and increased VDR expression levels by 41.8 ± 11% (P < 0.001), but G25 showed no effect. However, D0.5+G25 decreased aP2 expression to 52 ± 4.2% (P < 0.05) and increased VDR expression levels by 131 ± 14.5% (P < 0.0001). Discussion: These findings suggest that combining 1,25(OH)2D3 with genistein results in an enhanced inhibition of lipid accumulation and induction of apoptosis in maturing 3T3‐L1 preadipocytes.  相似文献   

11.
The orphan receptor C5L2 has recently been described as a high affinity binding protein for complement fragments C5a and C3a that, unlike the previously described C5a receptor (CD88), couples only weakly to G(i)-like G proteins (Cain, S. A., and Monk, P. N. (2002) J. Biol. Chem. 277, 7165-7169). Here we demonstrate that C5L2 binds the metabolites of C4a and C3a, C4a des-Arg(77), and C3a des-Arg(77) (also known as the acylation-stimulating protein or ASP) at a site distinct from the C5a binding site. The binding of these metabolites to C5L2 does not stimulate the degranulation of transfected rat basophilic leukemia cells either through endogenous rat G proteins or when co-transfected with human G(alpha 16). C3a des-Arg(77)/ASP and C3a can potently stimulate triglyceride synthesis in human skin fibroblasts and 3T3-L1 preadipocytes. Here we show that both cell types and human adipose tissue express C5L2 mRNA and that the human fibroblasts express C5L2 protein at the cell surface. This is the first demonstration of the expression of C5L2 in cells that bind and respond to C3a des-Arg(77)/ASP and C3a. Thus C5L2, a promiscuous complement fragment-binding protein with a high affinity site that binds C3a des-Arg(77)/ASP, may mediate the acylation-stimulating properties of this peptide.  相似文献   

12.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. In mice, C3 (the precursor to ASP) knock-out (KO) results in ASP deficiency and leads to reduced body fat and leptin levels yet they are hyperphagic. In the present study, we investigated the mechanism for this energy repartitioning. Compared with wild-type (WT) mice, male and female C3(-/-) ASP-deficient mice had elevated oxygen consumption (VO2) in both the active (dark) and resting (light) phases of the diurnal cycle: +8.9% males (p < 0.05) +9.4% females (p < 0.05). Increased physical activity (movement) was observed during the dark phase in female but not in male KO animals. Female WT mice moved 16.9 +/- 2.4 m whereas KO mice moved 30.1 +/- 5.4 m, over 12 h, +78.4%, p < 0.05). In contrast, there was no difference in physical activity in male mice, but a repartitioning of dietary fat following intragastric fat administration was noted. This was reflected by increased fatty acid oxidation in liver and muscle in KO mice, with increased UCP2 (inguinal fat) and UCP3 (muscle) mRNA expression (p = 0.005 and 0.036, respectively). Fatty acid uptake into brown adipose tissue (BAT) and white adipose tissue (WAT) was reduced as reflected by a decrease in the fatty acid incorporation into lipids (BAT -68%, WAT -29%. The decrease of FA incorporation was normalized by intraperitoneal administration of ASP at the time of oral fat administration. These results suggest that ASP deficiency results in energy repartitioning through different mechanisms in male and female mice.  相似文献   

13.
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages.BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2–C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser473) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes.C5L2–C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2–C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.  相似文献   

14.
Angiotensin II (Ang II). endothelin-1 (ET-1) and phenylephrine are receptor agonists that share the signal transduction acting through acceleration of phosphoinositide hydrolysis in the heart. Because the regulation of myocardial contractility induced by these receptor agonists shows a wide range of species-dependent variation among experimental animals, we carried out experiments to elucidate the mechanism of contractile regulation induced by these agents in mice which are employed currently more as transgenic models. Effects of Ang II, ET-1 and phenylephrine on cell shortening and Ca2+ transients were investigated in single ventricular myocytes loaded with indo-1/AM. Ang II (10(-8), 10(-7) M), ET-1 (10(-10), 10(-9) M) and phenylephrine (10(-6), 10(-5) M in the presence of the beta-adrenoceptor antagonist timolol) decreased the cell shortening [Ang II: 58.4+/-9.03 (n = 8), 50.3+/-11.90% (n = 6); ET-1: 48.4+/-8.27, 31.2+/-6.45% (n = 5); phenylephrine: 45.7+/-11.60, 28.7+/-5.89% (n = 5)]. By contrast, the amplitude of Ca2+ transients was not significantly influenced by these agonists. The selective protein kinase C inhibitor chelerythrine at 10(-6) M significantly inhibited the decrease in cell shortening induced by these receptor agonists. These results indicate that Ang II, ET-1 and phenylephrine elicit a negative inotropic effect with insignificant alteration of Ca2+ transients, which may be mainly mediated by activation of protein kinase C in mouse ventricular cardiomyocytes.  相似文献   

15.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. ASP administration results in more rapid postprandial lipid clearance. In mice, C3 (the precursor to ASP) knockout results in ASP deficiency and leads to reduced body fat and leptin levels. The protective potential of ASP deficiency against obesity and involvement of the leptin pathway were examined in ob/ob C3(-/-) double knockout mice (2KO). Compared with age-matched ob/ob mice, 2KO mice had delayed postprandial triglyceride and fatty acid clearance; associated with decreased body weight (4-17 weeks age: male: -13.7%, female: -20.6%, p < 0.0001) and HOMA (homeostasis model assessment) index (-37.7%), suggesting increased insulin sensitivity. By contrast, food intake in 2KO mice was +9.1% higher over ob/ob mice (p < 0.001, 2KO 5.1 +/- 0.2 g/day, ob/ob 4.5 +/- 0.2 g/day, wild type 2.6 +/- 0.1 g/day). The hyperphagia/leanness was balanced by a 28.5% increase in energy expenditure (oxygen consumption: 2KO, 131 +/- 8.9 ml/h; ob/ob, 102 +/- 4.5 ml/h; p < 0.01; wild type, 144 +/- 8.9 ml/h). These results suggest that the ASP regulation of energy storage may influence energy expenditure and dynamic metabolic balance.  相似文献   

16.
More information is needed on the physiological role of the tachykinins (TKs), especially neurokinin3-receptor (NK3) agonists, in the pancreas. In this paper we investigated and compared the effect of PG-KII (10(-9) to 10(-6) M), a natural NK3-receptor agonist, with that of the known secretagogues substance P (10(-9) to 10(-6)M), caerulein (10(-11) to 10(-8) M) and carbachol (10(-8) to 10(-5) M), on amylase secretion from dispersed pancreatic acini of the guinea pig and rat. PG-KII (10(-7) M) significantly increased basal amylase release from guinea pig pancreatic acini (from 5.4+/-0.9% to 11.3+/-0.5%, P < 0.05) but left basal release in the rat unchanged (6.5+/-0.5%). The stimulant effect of PG-KII on guinea pig acini was significantly reduced by the NK3-receptor antagonist, SR 142801 (5 x 10(-7) M), and left unchanged by the NK1-receptor antagonist, SR 140333 (5 x 10(-7) M). Conversely, substance P (10(-7) M) significantly stimulated amylase secretion from rat and guinea pig acini (12.6+/-0.6% and 12.1+/-0.7%, P < 0.05). This stimulated effect of substance P was antagonized by the NK1--receptor antagonist (5 x 10(-7) M), but not by the NK3-receptor antagonist (5 x 10(-7) M). The PG-KII- and substance P-evoked maximal responses were lower than those evoked by caerulein (10(-9) M) (guinea pig, 19.1+/-1.3%; rat, 1802+/-0.9%, P < 0.01) and carbachol (10(-5) M) (guinea pig, 23.3+/-1.2%; rat, 24.0+/-1.1%, P < 0.01). The inhibitors of phospholipase C U-73122 (10(-5) M), phospholipase A2 quinacrine (10(-5)M), and protein tyrosine kinase genistein (10(-4) M), partly but significantly inhibited PG-KII, as well as carbachol-stimulated amylase release. Coincubation of PG-KII 10(-7) M with submaximal doses of caerulein (10(-11) to 10(-10) M) and carbachol (10(-7) to 10(-6) M) had an additive effect on amylase release. Pre-incubation with PG-KII (10(-7) M) for 30 min significantly reduced the subsequent amylase response to PG-KII, whereas pre-incubation with caerulein 10(-10) M or carbachol 10(-6) M did not. These findings suggest that PG-KII directly contributes to pancreatic exocrine secretion by interacting with acinar NK3 receptors of the guinea pig but not of the rat. PG-KII signal transduction involves the intracellular phospholipase C, phospholipase A2 and protein tyrosine kinase pathways. The NK3 receptor system cooperates with the other known secretagogues in regulating guinea pig exocrine pancreatic secretion and undergoes rapid homologous desensitization.  相似文献   

17.
Male Wistar rats of the third generation of rats drinking 200 micrograms Ni2+/mL as NiCl2 in their drinking water were studied. Basal plasma glucose and insulin levels were unchanged. Epididymal adipocytes from Ni2(+)-fed rats showed an increased insulin binding with a slight increase in apparent insulin affinity (ED50: Ni2(+)-fed rats 2.8 x 10(-9) M and controls 5 x 10(-9) M) with no change in insulin receptor numbers (Ni2(+)-fed rats 143,000 +/- 12,000 (6) receptors/cell and controls 126,000 +/- 13,000 (5]. Moreover, a decreased sensitivity to the antilipolytic response of insulin was also observed in adipocytes from Ni2(+)-fed rats. These events could represent actions of Ni2+ both at the receptor and post-receptor insulin levels. Several possible mechanisms involved in the process are suggested.  相似文献   

18.
The clonal preadipose cell line, MC3T3-G2/PA6, has the capacity to differentiate into adipocytes in response to glucocorticoids and to support in vitro growth of hemopoietic stem cells (CFU-S). To study the relationship between these capacities, we precultured the MC3T3-G2/PA6 cells for varying days in the presence or absence of dexamethasone and then cocultured them with mouse bone marrow cells. Logarithmically growing cultures contained no detectable adipocytes and showed the highest growth-supporting activity for CFU-S, whereas cultures containing the largest number of adipocytes showed the lowest activity. When bone marrow cells were seeded onto 3-day-old MC3T3-G2/PA6 preadipocyte layers at 1 X 10(5) cells/35-mm dish, day 12 CFU-S grew with a population doubling time of about 37 hr, and at least 75% of them were associated with the cell layer between days 2 and 7. In the absence of the preadipocytes, CFU-S were not detected in the adherent cell fraction and decreased with a half-life of about 18 hr. More than 80% of CFU-C were also found to be associated with the preadipocyte layer, and they increased about 24-fold in number during 7 days in culture. Morphologically, hemopoietic cells developing into mature granulocytes and macrophages were distributed between the layers of preadipocytes. Dendritic processes of preadipocytes were frequently in close alignment with the hemopoietic cells. However, adipocytes failed to show such an intimate association with hemopoietic cells. These results indicate that MC3T3-G2/PA6 cells in the preadipocyte stage, but not in the adipocyte stage, have the capacity to support CFU-S growth, and that hemopoiesis in our cocultivation system proceed within the microenvironmental milieu provided by MC3T3-G2/PA6 preadipocytes.  相似文献   

19.
Expansion of adipose tissue mass results from increased number and size of adipocyte cells. We hypothesized that subcutaneous abdominal preadipocytes in obese individuals might have an intrinsically higher propensity to differentiate into adipocytes. Thus we investigated the relationship between obesity and the level of in vitro preadipocyte differentiation in Pima Indians. Subcutaneous abdominal stromal vascular fractions containing preadipocytes were cultured from 58 nondiabetic subjects [31 M/27 F, 30 +/- 6 yr, body fat 34 +/- 8% by dual-energy X-ray absorptiometry (means +/- SD)]. The average percentage of preadipocyte differentiation (PDIFF; cell count by microscopy) was 11 +/- 11% (range 0.2-51%). PDIFF correlated negatively with percent body fat (r = -0.35, P = 0.006) and waist circumference (r = -0.45, P = 0.0004). Multiple regression analysis indicated that waist circumference (P = 0.01), sex (P = 0.01), and percent body fat (P = 0.05) were significant determinants of PDIFF. Molecular characterization of predifferentiated cultured cells was performed by real-time PCR measurements of glucocorticoid receptor-alpha (GRalpha), insulin-like growth factor I receptor (IGF-IR), peroxisome proliferator-activated receptor-gamma (PPARgamma), enhancer-binding protein GATA-3, CCAAT/enhancer-binding protein-alpha undifferentiated protein (CUP/AP-2alpha), and endothelial cell-specific marker 2 (ECSM2). The mRNA concentrations of GRalpha correlated with PDIFF (r = 0.29, P = 0.03), but the others did not (IGF-IR, r = 0.003, P = 1.0; PPARgamma, r = -0.1, P = 0.5; GATA-3, r = 0.02, P = 0.9; CUP/AP-2alpha, r = -0.2, P = 0.1; ECSM2, r = 0.04, P = 0.7). Contrary to our hypothesis, the results may indicate a blunted in vitro differentiation potential of preadipocytes in centrally obese individuals. The lower differentiation potential of preadipocytes in the obese subjects might be due, at least partly, to decreased glucocorticoid receptor expression.  相似文献   

20.
Expression of ligand binding properties for an atypical beta-adrenergic receptor (beta-AR) subtype was studied during the adipose differentiation of murine 3T3-F442A cells and compared with that of the human beta 3-AR expressed in Chinese hamster ovary cells stably transfected with the human beta 3-AR gene (CHO-beta 3 cells) Emorine, L. J., Marullo, S., Briend-Sutren, M. M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A. D. (1989) Science 245, 1118-1121). 3T3-F442A adipocytes exhibited high and low affinity binding sites for (-)-4-(3-t-butylamino-2-hydroxypropoxy) [5,7-3H]benzimidazole-2-one ((-)-[3H]CGP-12177) (KD = 1.2 and 38.3 nM) and (-)-[125I]iodocyanopindolol ([125I]CYP) (KD = 47 and 1,510 pM). The high affinity sites corresponded to the classical beta 1- and beta 2-AR subtypes whereas the KD values of the low affinity sites for the radioligands were similar to those measured in CHO-beta 3 cells (KD = 28 nM and 1,890 pM for (-)-[3H]CGP12177 and [125I]CYP, respectively). These low affinity sites were undetectable in preadipocytes but represented about 90% of total beta-ARs in adipocytes. The atypical beta-AR and the human beta 3-AR add similarly low affinities (Ki = 3-5 microM) for (+/-)-(2-(3-carbamoyl-4-hydroxyphenoxy)ethylamino-3)-(4-(1-methyl- 4- trifluormethyl-2-imidazolyl)-phenoxy)-2-propanol methane sulfonate (CGP20712A) or erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminob utan-2-ol (ICI118551), highly selective beta 1- and beta 2-AR antagonists, respectively, in agreement with the poor inhibitory effect of the compounds on (-)-isoproterenol (IPR)-stimulated adenylate cyclase activity. Atypical beta-AR and beta 3-AR had an affinity about 10-50 times higher for sodium-4-(2-[2-hydroxy-2-(3-chlorophenyl)ethylamino]propyl)phenoxyace tate sesquihydrate (BRL37344) than the beta 1-AR subtype. This correlates with the potent lipolytic effect of BRL37344 in adipocytes. The rank order of potency of agonists in functional and binding studies was BRL37344 greater than IPR less than (-)-norepinephrine greater than (-)-epinephrine both in 3T3 adipocytes and CHO-beta 3 cells. As in CHO-beta 3 cells, the classical beta 1- and beta 2-antagonists CGP12177, oxprenolol, and pindolol were partial agonists in adipocytes. Although undetectable in preadipocytes, a major mRNA species of 2.3 kilobases (kb) and a minor one of 2.8 kb were observed in adipocytes by hybridization to a human beta 3-AR specific probe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号