首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cdk2.cyclin E and cdk5.p25 are two members of the cyclin-dependent kinase family that are potential therapeutic targets for oncology and Alzheimer's disease, respectively. In this study we have investigated the mechanism for these enzymes. Kinases catalyze the transfer of phosphate from ATP to a protein acceptor, thus utilizing two substrates, ATP and the target protein. For a two-substrate reaction, possible kinetic mechanisms include: ping-pong, sequential random, or sequential ordered. To determine the kinetic mechanism of cdk2.GST-cyclin E and cdk5.GST-p25, kinase activity was measured in experiments in which concentrations of peptide and ATP substrates were varied in the presence of dead-end inhibitors. A peptide identical to the peptide substrate, but with a substitution of valine for the phosphoacceptor threonine, competed with substrate with a K(i) value of 0.6 mm. An aminopyrimidine, PNU 112455A, was identified in a screen for inhibitors of cdk2. Nonlinear least squares and Lineweaver-Burk analyses demonstrated that the inhibitor PNU 112455A was competitive with ATP with a K(i) value of 2 microm. In addition, a co-crystal of PNU 112455A with cdk2 showed that the inhibitor binds in the ATP binding pocket of the enzyme. Analysis of the inhibitor data demonstrated that both kinases use a sequential random mechanism, in which either ATP or peptide may bind first to the enzyme active site. For both kinases, the binding of the second substrate was shown to be anticooperative, in that the binding of the first substrate decreases the affinity of the second substrate. For cdk2.GST-cyclin E the kinetic parameters were determined to be K(m, ATP) = 3.6 +/- 1.0 microm, K(m, peptide) = 4.6 +/- 1.4 microm, and the anticooperativity factor, alpha = 130 +/- 44. For cdk5.GST-p25, the K(m, ATP) = 3.2 +/- 0.7 microm, K(m, peptide) = 1.6 +/- 0.3 microm, and alpha = 7.2 +/- 1.8.  相似文献   

2.
The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.  相似文献   

3.
Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.  相似文献   

4.
Cdc25A, a phosphatase essential for G1-S transition, associates with, dephosphorylates, and activates the cell cycle kinase cyclin E-cdk2. p21CIP1 and p27 are cyclin-dependent kinase (cdk) inhibitors induced by growth-suppressive signals such as p53 and transforming growth factor beta (TGF-beta). We have identified a cyclin binding motif near the N terminus of Cdc25A that is similar to the cyclin binding Cy (or RR LFG) motif of the p21CIP1 family of cdk inhibitors and separate from the catalytic domain. Mutations in this motif disrupt the association of Cdc25A with cyclin E- or cyclin A-cdk2 in vitro and in vivo and selectively interfere with the dephosphorylation of cyclin E-cdk2. A peptide based on the Cy motif of p21 competitively disrupts the association of Cdc25A with cyclin-cdks and inhibits the dephosphorylation of the kinase. p21 inhibits Cdc25A-cyclin-cdk2 association and the dephosphorylation of cdk2. Conversely, Cdc25A, which is itself an oncogene up-regulated by the Myc oncogene, associates with cyclin-cdk and protects it from inhibition by p21. Cdc25A also protects DNA replication in Xenopus egg extracts from inhibition by p21. These results describe a mechanism by which the Myc- or Cdc25A-induced oncogenic and p53- or TGF-beta-induced growth-suppressive pathways counterbalance each other by competing for cyclin-cdks.  相似文献   

5.
It has been suggested that binding of p27 and p21 kinase inhibitory proteins (KIPs) to cyclin-dependent kinases (cdks) render them inaccessible to cdk-activating kinase (CAK), presumably by steric hindrance by the C-terminal residues. However, this common mechanism of inhibition is inconsistent with the known structural divergence in the p27 and p21 C-terminal domains. Therefore, we studied the direct binding of N-terminal minimal domain of p27 (amino acids 28-81) to cdk2/cyclin E. An unlabeled p27 minimal domain, mutated in the N-terminal LFG motif, was unable to compete with a labeled minimal domain for binding to cdk2/cyclin E. The p27 and its minimal domain inhibited CAK-mediated phosphorylation of cdk2/cyclin E. This inhibitory effect was significantly diminished with p27 minimal domain mutated in the LFG motif. A synthetic peptide, ACRRLFGPVDSE, from the N-terminal residues 17-28 of p21, was also a potent inhibitor of CAK-mediated cdk2/cyclin E phosphorylation. Taken together, these results show that anchoring of p27 or p21 KIPs to cyclin E via the N-terminal LFG-containing motif can block CAK access to its cdk2/cyclin E substrate.  相似文献   

6.
7.
p27(Kip1) associates with cyclin/cdk complexes and inhibiting cdk activity, and overexpression of p27(Kip1) induces G1 arrest. We found that p27(Kip1) overexpression inhibits cdk2 kinase activity, but not cdk6 kinase activity in HeLa cells. The amount of p27(Kip1) associated with cdk2 was significantly higher than that associated with cdk6. cdk6 complexes contained detectable amounts of p27(Kip1) in all human cell lines examined, except in HeLa cells where p27(Kip1) preferentially associated with cdk2. It appears that in HeLa cells overexpressed p27(Kip1) fails to inhibit cdk6 kinase activity because of low binding affinity of cdk6 to p27(Kip1). The low binding affinity is due to a low level of the cdk6/cyclin D complexes. Functional inactivation of pRb has an effect on p27(Kip1) association with cdk6/cyclin D complexes.  相似文献   

8.
9.
Zhang Z  Huong SM  Wang X  Huang DY  Huang ES 《Journal of virology》2003,77(23):12660-12670
Previous work has demonstrated that the human cytomegalovirus IE1-72 protein is able to bind to the N terminus of p107, and IE1-72 alone is sufficient for alleviation of p107-mediated cell growth suppression. However, the mechanism of this alleviation is unclear. Here, we show that IE1-72 can alleviate p107 inhibition of cyclin E/cdk2 kinase activity. We cotransfected various IE1-72 and p107 constructs into C33A cells and demonstrated that IE1-72 could activate the kinase activity of cyclin E/cdk2. Conversely, IE2-86 did not activate this activity, suggesting that the interaction between p107 and IE1-72 and the subsequent kinase activation are specific. By the use of a series of deletion and point mutants of IE1-72 and p107, we observed that a mutation of the loop region of helix-loop-helix-turn-helix in exon 3 of IE1-72 as well as a mutation of the leucine zipper-2 region in exon 4 of IE1-72 abolished binding to p107. In addition, these two IE1-72 mutants did not alleviate p107 inhibition of cyclin E/cdk2 kinase activity and also failed to alleviate p107 inhibition of the E2F-responsive promoter. Meanwhile, deletion of the N-terminal aa 1 to 175 of p107 abolished both p107 binding with IE1-72 and p107 inhibition of cyclin E/cdk2 kinase activity. This result confirms that the N-terminus aa 1 to 175 region of p107 is a common region where both IE1-72 protein and cyclin E/cdk2 bind. We propose a mechanism in which binding of IE1-72 to p107 displaces cyclin E/cdk2 from p107. Once released from p107, cyclin E/cdk2 is able to function as an active kinase.  相似文献   

10.
11.
Normal human B lymphocytes are sensitive to the growth-inhibitory action of transforming growth factor beta1 (TGFbeta1) whereas malignant B lymphoma cells are mostly resistant to TGFbeta1 effects. We examined the phosphorylation status of retinoblastoma protein and the activity of G(1) cyclin-dependent kinases (cdk) in TGFbeta1-sensitive malignant follicular lymphoma cells during the TGFbeta1 treatment. The kinase activity of cdk2, cdk4, and cdk6 was significantly reduced and hypophosphorylation of pRb on serine 795 (S795) and threonine 373 (T373) was observed. We examined the composition of cdk complexes and the level of cdk inhibitors to explain the inhibitory action of TGFbeta1 toward cdk activity. Both cdk4 and cdk6 were notably dissociated from cyclin D cofactors, while cyclin E-cdk2 complexes remained coupled in TGFbeta1-treated cells. TGFbeta1-induced growth arrest was associated with notably increased binding of p21(WAF1) to cdk4 and cdk6. No induction of cdk-inhibitor molecules of INK family was observed in TGFbeta1-treated DoHH2 cells. As shown, TGFbeta1-induced growth arrest of malignant B cells was associated with the activation of CIP/KIP family members of cdk inhibitors.  相似文献   

12.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

13.
Cyclin B is the key regulatory protein controlling mitosis in all eukaryotes, where it binds cyclin-dependent kinase, cdk1, forming a complex which initiates the mitotic program through phosphorylation of select proteins. Cyclin B regulates the activation, subcellular localization, and substrate specificity of cdk1, and destruction of cyclin B is necessary for mitotic exit. Overexpression of human cyclin B1 has been found in numerous cancers and has been associated with tumor aggressiveness. Here we report the crystal structure of human cyclin B1 to 2.9 Å. Comparison of the structure with cyclin A and cyclin E reveals remarkably similar N-terminal cyclin box motifs but significant differences among the C-terminal cyclin box lobes. Divergence in sequence gives rise to unique interaction surfaces at the proposed cyclin B/ cdk1 interface as well as the ‘RxL’ motif substrate binding site on cyclin B. Examination of the structure provides insight into the molecular basis for differential affinities of protein based cyclin/cdk inhibitors such as p27, substrate recognition, and cdk interaction.  相似文献   

14.
15.
SU9516 is a 3-substituted indolinone compound with demonstrated potent and selective inhibition toward cyclin dependent kinases (cdks). Here, we describe the kinetic characterization of this inhibition with respect to cdk2, 1, and 4, along with the crystal structure in complex with cdk2. The molecule is competitive with respect to ATP for cdk2/cyclin A, with a K(i) value of 0.031 microM. Similarly, SU9516 inhibits cdk2/cyclin E and cdk1/cyclin B1 in an ATP-competitive manner, although at a 2- to 8-fold reduced potency. In contrast, the compound exhibited non-competitive inhibition with respect to ATP toward cdk4/cyclin D1, with a 45-fold reduced potency. The X-ray crystal structure of SU9516 bound to cdk2 revealed interactions between the molecule and Leu83 and Glu81 of the kinase. This study should aid in the development of more potent and selective cdk inhibitors for potential therapeutic agents.  相似文献   

16.
Current models suggest that cyclin B1/cdk1 regulates the G2 to M transition and that its activity is maximal during the period from prophase to metaphase in mammalian cells. Although data are lacking, the idea that cyclin B1/cdk1 regulates the transit time from prophase to metaphase is reasonable. Development of small molecule inhibitors of cyclin dependent kinases (cdk’s) as cancer therapeutics presents an opportunity to evaluate the effects of inhibiting cdk’s in asynchronous cell populations. Analysis of cdk1 inhibitors is complicated by their ability to inhibit other cdk’s in vitro at higher concentrations. In this study we measured the effects of two cdk1 inhibitors on S, G2, and M transit for Hela cells and correlated these effects on cyclin B1/cdk1 and cyclin A/cdk2 activities. Dose responses demonstrate that low concentrations of both compounds inhibited the activity of cdk1 but not cdk2 in HeLa cells. The partial loss of cdk1 activity at low doses induced a prophase accumulation during a 3 h period and an increased transit time through mitosis. In addition, both inhibitors lengthened the G2 transit time with progressively greater effect on mid and late G2. High doses of both inhibitors increased the S phase time, which correlated with the inhibition of cdk2 activity. These results suggest that cdk1-cyclin activity is rate limiting for cell cycle progression during a period from mid G2 through prophase.  相似文献   

17.
Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.  相似文献   

18.
Both cyclins A and B associate with and thereby activate cyclin-dependent protein kinases (cdks). We have investigated which component in the cyclin-cdk complex determines its substrate specificity. The A- and B-type cyclin-cdk complexes phosphorylated histone H1 and their cyclin subunits in an indistinguishable manner, irrespective of the catalytic subunit, p33cdk2 or p34cdc2. In contrast, only the cyclin A-cdk complexes phosphorylated the Rb-related p107 protein in vitro. Likewise, binding studies revealed that cyclin A-cdk complexes bound stably to p107 in vitro, whereas cyclin B-cdk complexes did not detectably associate with p107, under identical assay conditions. Binding to p107 required both cyclin A and a cdk as neither subunit alone bound to p107. These results demonstrate that although the kinase subunit provides a necessary component for binding, it is the cyclin subunit that plays the critical role in targeting the complex to p107. Finally, we show that the cyclin A-p33cdk2 complex phosphorylated p107 in vitro at most of its sites that are also phosphorylated in human cells, suggesting that the cyclin A-p33cdk2 complex is a major kinase for p107 in vivo.  相似文献   

19.
Current models suggest that cyclin B1/cdk1 regulates the G2 to M transition and that its activity is maximal during the period from prophase to metaphase in mammalian cells. Although data are lacking, the idea that cyclin B1/cdk1 regulates the transit time from prophase to metaphase is reasonable. Development of small molecule inhibitors of cyclin dependent kinases (cdk's) as cancer therapeutics presents an opportunity to evaluate the effects of inhibiting cdk's in asynchronous cell populations. Analysis of cdk1 inhibitors is complicated by their ability to inhibit other cdk's in vitro at higher concentrations. In this study we measured the effects of two cdk1 inhibitors on S, G2, and M transit for Hela cells and correlated these effects on cyclin B1/cdk1 and cyclin A/cdk2 activities. Dose responses demonstrate that low concentrations of both compounds inhibited the activity of cdk1 but not cdk2 in HeLa cells. The partial loss of cdk1 activity at low doses induced a prophase accumulation during a 3 h period and an increased transit time through mitosis. In addition, both inhibitors lengthened the G2 transit time with progressively greater effect on mid and late G2. High doses of both inhibitors increased the S phase time, which correlated with the inhibition of cdk2 activity. These results suggest that cdk1-cyclin activity is rate limiting for cell cycle progression during a period from mid G2 through prophase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号