首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.  相似文献   

2.
To clarify the molecular basis of severe acute respiratory syndrome coronavirus (SARS-CoV) adaptation to different host species, we serially passaged SARS-CoV in rat angiotensin-converting enzyme 2 (ACE2)-expressing cells. After 15 passages, the virus (Rat-P15) came to replicate effectively in rat ACE2-expressing cells. Two amino acid substitutions in the S2 region were found on the Rat-P15 S gene. Analyses of the infectivity of the pseudotype-bearing S protein indicated that the two substitutions in the S2 region, especially the S950F substitution, were responsible for efficient infection. Therefore, virus adaptation to different host species can be induced by amino acid substitutions in the S2 region.  相似文献   

3.
We have localized a functional region of the RNA bacteriophage Q beta replicase following an extensive mutational analysis. Using the method of oligonucleotide linker-insertion mutagenesis, we specifically introduced mutations into a cloned DNA copy of the Q beta replicase gene so that the resulting replicase products would putatively contain small amino acid insertions. In a selective phenotypic assay, we screened mutant replicases for RNA-directed replication activity in vivo. Analysis of 37 different mutant clones indicated that Q beta replicase can accept amino acid substitutions and insertions at several sites at the amino and carboxy termini without abolishing functional activity in vivo or in vitro. However, disruption within the internal amino acid sequence resulted almost exclusively in nonfunctional enzyme. The results suggest that the central region of the replicase protein contains a rigid amino acid composition that is required for replicase function, whereas the amino and carboxy termini are much more receptive to small amino acid insertions and substitutions. These experiments should further enable us to analyze the coding function of the Q beta replicase gene independently of other phage RNA functions contained within this nucleotide region.  相似文献   

4.
The nucleotide sequence of a 2711bp DNA segment which contains the N-terminal coding sequence and the 5' flanking region of a crystal protein gene (bta) from Bacillus thuringiensis subsp. aizawai 7.29 has been determined. The coding region encodes an 824 amino-acid polypeptide corresponding to a carboxy-terminally truncated delta-endotoxin specifically active against the cotton leaf worm Spodoptera littoralis. Comparison of the deduced amino acid sequence of the bta gene with that of the 4.5, 5.3 and 6.6 kb classes of lepidopteran-active delta-endotoxins revealed that the Bta sequence contains a very high level of amino acid substitutions in the N-terminal part of the protoxin molecule. The substitutions are grouped in several highly variable segments separated by highly conserved regions. These conserved domains are also present in the dipteran- and coleopteran-active delta-endotoxins. The control region of the bta gene shows considerable DNA identity with the control regions of the other lepidopteran-active genes. Deletions of the 3' region of the gene were carried out and the toxic fraction of the bta delta-endotoxin was identified with the N-terminal half of the molecule.  相似文献   

5.
The Cdt is a family of gram-negative bacterial toxins that typically arrest eukaryotic cells in the G0/G1 or G2/M phase of the cell cycle. The toxin is a heterotrimer composed of the cdtA, cdtB and cdtC gene products. Although it has been shown that the CdtA protein subunit binds to cells in culture and in an enzyme-linked immunosorbent assay (CELISA) the precise mechanisms by which CdtA interacts with CdtB and CdtC has not yet been clarified. In this study we employed a random mutagenesis strategy to construct a library of point mutations in cdtA to assess the contribution of individual amino acids to binding activity and to the ability of the subunit to form biologically active holotoxin. Single unique amino acid substitutions in seven CdtA mutants resulted in reduced binding of the purified recombinant protein to Chinese hamster ovary cells and loss of binding to the fucose-containing glycoprotein, thyroglobulin. These mutations clustered at the 5'- and 3'-ends of the cdtA gene resulting in amino acid substitutions that resided outside of the aromatic patch region and a conserved region in CdtA homologues. Three of the amino acid substitutions, at positions S165N (mutA81), T41A (mutA121) and C178W (mutA221) resulted in gene products that formed holotoxin complexes that exhibited a 60% reduction (mutA81) or loss (mutA121, mutA221) of proliferation inhibition. A similar pattern was observed when these mutant holotoxins were tested for their ability to induce cell cycle arrest and to convert supercoiled DNA to relaxed and linear forms in vitro. The mutations in mutA81 and mutA221 disrupted holotoxin formation. The positions of the amino acid substitutions were mapped in the Haemophilus ducreyi Cdt crystal structure providing some insight into structure and function.  相似文献   

6.
To understand the relationship between the primary structure and function of varicella-zoster virus thymidine kinase (VZV TK; EC 2.7.1.21), we established rapid screening and phenotypic selection of mutant VZV TK genes in TK-deficient Escherichia coli C600 by using a constitutive pKK223-3 expression plasmid. In this screening system, mutant TK genes generated by random mutagenesis were identified by the sensitivity of E. coli-expressing VZV TKs to 5-bromo-2'-deoxyuridine and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil. Twenty-four mutant clones with amino acid substitutions were isolated, and their nucleotide sequence and enzymatic activities were determined. Of the 24 clones, 20 had single amino acid substitutions, 2 clones had double amino acid substitutions, and 1 clone had triple amino acid substitutions. In 17 cases of single amino acid substitution, six mutations led to lost enzyme activity, and four of these six mutations centered in the ATP-binding site. The other 11 mutations resulted in reduction of both TK and thymidylate kinase activities or only thymidylate kinase activity and were located in scattered positions in the VZV TK gene, although 5 mutations showed a tendency to cluster in the region between positions 251 and 260.  相似文献   

7.
The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.  相似文献   

8.
Serial passage of the prototype (PR) cell-adapted Wyoming strain of equine infectious anemia virus (EIAV) in fetal donkey dermal (FDD) rather than fetal horse (designated fetal equine kidney [FEK]) cell cultures resulted in the generation of a variant virus strain which produced accelerated cytopathic effects in FDD cells and was 100- to 1,000-fold more sensitive to neutralizing antibodies than its parent. This neutralization-sensitive variant was designated the FDD strain. Although there were differences in glycosylation between the PR and FDD strains, passage of the FDD virus in FEK cells did not reduce its sensitivity to neutralizing antibody. Nucleotide sequencing of the region encoding the surface unit (SU) protein from the FDD strain revealed nine amino acid substitutions compared with the PR strain. Two of these substitutions resulted in changes in the polarity of charge, four caused the introduction of a charged residue, and three had no net change in charge. Nucleotide sequence analysis was extended to the region of the FDD virus genome encoding the extracellular domain of the transmembrane envelope glycoprotein (TM). Unlike the situation with the FDD virus coding region, there were minor variations in nucleotide sequence between individual molecular clones containing this region of the TM gene. Although each clone contained three nucleotide substitutions compared with the PR strain, only one of these was common to all, and this did not affect the amino acid content. Of the remaining two nucleotide substitutions, only one resulted in an amino acid change, and in each case, this change appeared to be conservative. To determine if amino acid substitutions in the SU protein of FDD cell-grown viruses were responsible for the enhanced sensitivity to neutralizing antibodies, chimeric viruses were constructed by using an infectious molecular clone of EIAV. These chimeric viruses contained all of the amino acid substitutions found in the FDD virus strain and were significantly more sensitive to neutralizing antibodies than viruses from the parental (PR) molecular clone. These results demonstrated that sensitivity to neutralizing antibodies in EIAV can be conferred by amino acid residues in the SU protein. However, such amino acid substitutions were not sufficient to enhance cytopathogenicity, as the chimeric viruses did not cause excessive degenererative effects in FDD cells, as was observed with the parental FDD virus strain.  相似文献   

9.
We have used linker scanning and site-directed mutagenesis in an attempt to distinguish among the known functions of the duck hepatitis B virus large envelope protein, p36. We found that linker-encoded amino acid substitutions in at least one region of the pre-S envelope protein p36 produced defects in both the production of enveloped virus and the regulation of covalently closed circular DNA (cccDNA) synthesis. Most linker substitutions, typically in the 5' two-thirds of the pre-S region of the p36 gene did not affect either cccDNA regulation or enveloped virus production but did destroy the infection competence of the enveloped particles produced. Single amino acid substitutions of residues 128 and 131 demonstrated a similar correlation between defects in the ability of p36 to support enveloped virus production and to control cccDNA levels. We concluded from these studies that virus production and cccDNA regulation probably require a common activity of p36.  相似文献   

10.
Although murine coronaviruses naturally infect only mice, several virus variants derived from persistently infected murine cell cultures have an extended host range. The mouse hepatitis virus (MHV) variant MHV/BHK can infect hamster, rat, cat, dog, monkey, and human cell lines but not the swine testis (ST) porcine cell line (J. H. Schickli, B. D. Zelus, D. E. Wentworth, S. G. Sawicki, and K. V. Holmes, J. Virol. 71:9499-9507, 1997). The spike (S) gene of MHV/BHK had 63 point mutations and a 21-bp insert that encoded 56 amino acid substitutions and a 7-amino-acid insert compared to the parental MHV strain A59. Recombinant viruses between MHV-A59 and MHV/BHK were selected in hamster cells. All of the recombinants retained 21 amino acid substitutions and a 7-amino-acid insert found in the N-terminal region of S of MHV/BHK, suggesting that these residues were responsible for the extended host range of MHV/BHK. Flow cytometry showed that MHV-A59 bound only to cells that expressed the murine glycoprotein receptor CEACAM1a. In contrast, MHV/BHK and a recombinant virus, k6c, with the 21 amino acid substitutions and 7-amino-acid insert in S bound to hamster (BHK) and ST cells as well as murine cells. Thus, 21 amino acid substitutions and a 7-amino-acid insert in the N-terminal region of the S glycoprotein of MHV/BHK confer the ability to bind and in some cases infect cells of nonmurine species.  相似文献   

11.
Molecular characterization of the Salmonella typhimurium parE gene.   总被引:3,自引:0,他引:3       下载免费PDF全文
The DNA sequence of the wild type S. typhimurium parE gene was determined. The predicted protein has 96.7% amino acid identity with the ParE protein of E.coli, but is 29 amino acids longer, due to an additional basepair in the 3' end of the S. typhimurium gene. Subclones of the S. typhimurium parE gene localized the sites of four heat sensitive mutations within parE. The parE206 and parE374 mutations are identical (Val67-Met) and lie in a highly conserved region corresponding to the ATP binding pocket of GyrB. Two additional heat sensitive mutations were sequenced and predict the following amino acid substitutions: parE377 (Gly399-Ser) and parE493 (Thr583-Pro). All of the heat sensitive mutations lie in regions with strong amino acid homology to GyrB.  相似文献   

12.
The complete amino acid sequence of the Fab fragment of protein KAU, a human monoclonal cold agglutinin (IgMk) with anti-I activity, was determined. The light chain (L-chain) consists of 215 residues; the variable (V)L region belongs to the Hum/Kv325/kIIIb sub-subgroup that is preferentially selected in human IgM autoimmune response. The joining (J) region is encoded by the Jk4 gene, and the constant region (C)L domain expresses the km3 allotypic marker. The Fd fragment contains 232 amino acids, and 120 of them comprise the variable domain. The VH region corresponds to the VHIV subgroup and is closely related to the VHIV 2.1 gene isolated from genomic DNA expressed in peripheral blood of a healthy Caucasian. The complementary-determining region 1 has a unique amino acid (Asp) at position 31, and the complementary-determining region 3 codified by the diversity segment (D) gene, shows poor homology with other known D sequences. The joining segment with two unusual substitutions at the D-J junction is encoded by the JH4 gene. Thus, cold agglutinin KAU is an IgM, VkIIIb-Jk4-km3; VHIV-JH4-C mu.  相似文献   

13.
We have used analysis of variance to partition the variation in synonymous and amino acid substitution rates between three effects (gene, lineage, and a gene-by-lineage interaction) in mammalian nuclear and mitochondrial genes. We find that gene effects are stronger for amino acid substitution rates than for synonymous substitution rates and that lineage effects are stronger for synonymous substitution rates than for amino acid substitution rates. Gene-by-lineage interactions, equivalent to overdispersion corrected for lineage effects, are found in amino acid substitutions but not in synonymous substitutions. The variance in the ratio of amino acid and synonymous substitution rates is dominated by gene effects, but there is also a significant gene-by-lineage interaction.  相似文献   

14.
Tat-specific cytotoxic T cells have previously been shown to exert positive Darwinian selection favoring amino acid replacements of an epitope of simian immunodeficiency virus (SIV). The region of the tat gene encoding this epitope falls within a region of overlap between the tat and vpr reading frames, and nonsynonymous nucleotide substitutions in the tat reading frame were found to occur disproportionately in such a way as to cause synonymous changes in the vpr reading frame. Comparison of published complete SIV genomes showed Tat to be the least conserved at the amino acid level of nine proteins encoded by the virus, while Vpr was one of the most conserved. Numerous parallel amino acid changes occurred within the Tat epitope independently in different monkeys, and purifying selection on the vpr reading frame, by limiting acceptable nonsynonymous substitutions in the tat reading frame, evidently has enhanced the probability of parallel evolution.  相似文献   

15.
Prolamin is the dominant class of seed storage protein in grasses (Poaceae). Information on the 10 kDa multigene family coding for prolamins characteristic of the bambusoid-oryzoid grasses is limited. Two genes encoding 10 kDa prolamin were cloned and sequenced in the bambusoid species Phyllostachys aurea to assess the sequence diversity of this gene family in the oryzoid-bambusoid grasses. The genes, ~417 bp in length, were 96% similar at the DNA sequence level, differing in 12 base substitutions dispersed throughout the sequence. Eight of these mutations were nonsynonymous, leading to amino acid substitutions in the coding region, and one was nonsense, producing an amber stop codon. One gene had an open reading frame (ORF) of 139 amino acids, while the other gene had a shorter ORF (106 amino acids) due to the presence of a stop codon in the coding region and, thus, represents a pseudogene. Deduced proteins showed amino acid composition similar to that of rice. The study underscores the overall conserved nature of this multigene family and reflects considerable sequence divergence at the DNA and amino acid levels between the Oryza and the Phyllostachys genes. The systematic implication of the data is discussed in light of the inconsistent placement of Oryza in the Bambusoideae or Oryzoideae.  相似文献   

16.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed by measuring the expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene linked to the HIV-LTR. These studies have revealed that four different domains of the protein that map within the N-terminal 56 amino acid region are essential for Tat function. In addition to the essential domains, an auxiliary domain that enhances the activity of the essential region has also been mapped between amino acid residues 58 and 66. One of the essential domains maps in the N-terminal 20 amino acid region. The other three essential domains are highly conserved among the various strains of HIV-1 and HIV-2 as well as simian immunodeficiency virus (SIV). Of the conserved domains, one contains seven Cys residues and single amino acid substitutions for several Cys residues indicate that they are essential for Tat function. The second conserved domain contains a Lys X Leu Gly Ile X Tyr motif in which the Lys residue is essential for trans-activation and the other residues are partially essential. The third conserved domain is strongly basic and appears to play a dual role. Mutants lacking this domain are deficient in trans-activation and in efficient targeting of Tat to the nucleus and nucleolus. The combination of the four essential domains and the auxiliary domain contribute to the near full activity observed with the 101 amino acid Tat protein.  相似文献   

17.
A human genomic DNA segment containing the gene for the corticotropin-releasing factor precursor has been isolated by screening a gene library with an ovine cDNA probe. The cloned DNA segment has been subjected to restriction endonuclease mapping and nucleotide sequence analysis. Comparison of the nucleotide sequence of the gene with that of the ovine cDNA indicates that an intron of 800 bp is inserted in the segment encoding the 5'-untranslated region of the mRNA. The segment corresponding to the protein-coding and the 3'-untranslated region of the mRNA is uninterrupted. The mRNA and amino acid sequences of the human corticotropin-releasing factor precursor have been deduced from the corresponding gene sequence. The deduced amino acid sequence of human corticotropin-releasing factor exhibits seven amino acid substitutions in comparison with the ovine counterpart.  相似文献   

18.
An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.  相似文献   

19.
We report here the complete nucleotide sequence of the hemagglutinin (HA) gene of influenza B virus B/Oregon/5/80 and, through comparative sequence analysis, identify amino acid substitutions in the HA1 polypeptide responsible for the antigenic alterations in laboratory-selected antigenic variants of this virus. The complete nucleotide sequence of the B/Oregon/5/80 HA gene was established by a combination of chemical sequencing of a full-length cDNA clone and dideoxy sequencing of the virion RNA. The nucleotide sequence is very similar to previously reported influenza B virus HA gene sequences and differs at only nine nucleotide positions from the B/Singapore/222/79 HA gene (Verhoeyen et al., Nucleic Acids Res. 11:4703-4712, 1983). The nucleotide sequences of the HA1 portions of the HA genes of 18 laboratory-selected antigenic variants were determined by the dideoxy method. Comparison of the deduced amino acid sequences of the parental and variant HA1 polypeptides revealed 16 different amino acid substitutions at nine positions. All amino acid substitutions resulted from single-point mutations, and no double mutants were detected, demonstrating that as in the influenza A viruses, single amino acid substitutions are sufficient to alter the antigenicity of the HA molecule. Many of the amino acid substitutions in the variants occurred at positions also observed to change in natural drift strains. The substitutions appear to identify at least two immunodominant regions which correspond to proposed antigenic sites A and B on the influenza A virus H3 HA.  相似文献   

20.
We observed previously that the carboxyl-terminal region of the third loop of the TSH receptor (amino acid residues 617-625) is important in signal transduction. To analyze this region in more detail, in the present study we used site-directed mutagenesis to substitute, on an individual basis, the seven amino acids previously mutated as a group. These amino acids are either charged residues or potential phosphorylation sites. Six of the mutant TSH receptors with individual amino acid substitutions bound TSH with high affinity and displayed a cAMP response to TSH stimulation similar to the wild-type TSH receptor. The mutant receptor TSH-R-Gly625 (Arg----Gly) did not transduce a signal, but these results are noninformative because of the loss of high affinity TSH binding. The present data indicate that for each of the six informative amino acid substitutions, the individual residues are not critical for signal transduction. A corollary of this conclusion is that in the important carboxyl-terminal region of the third cytoplasmic loop of the TSH receptor multiple amino acid residues function as a unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号