首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mongrel dogs (29) were anesthetized, paralyzed, and ventilated at a constant minute volume. AaD02 breathing air and 100% O2, venous admixture breathing air (Qva/Qt) and 100% O2 (Qs/Qt), single-breath diffusing capacity for CO (DLCO), and total pulmonary resistance (RL) and pulmonary compliance (CL) were measured before and after pulmonary embolization with autologus in vivo venous thrombi. Nine dogs were heparinized before embolization. In the 20 nonheparinized dogs AaDo2 breathing air increased from 11 to 26 mmHg, Qva/Qt from 4 to 22%, and Qs/At from 5 to 8%. DLCO decreased 24%, RL increased 43%, and CL fell 30%. In the nine heparinized dogs AaDo2 breathing air increased from 8 to 13 mmHg and Qva/Qt from 3 to 8%; Qs/Qt did not change. DLCO decreased 31%; RL and CL did not change significantly. The increase in Qva/Qt of 5% in the heparinized dogs was significantly less (P smaller than 0.001) than the increase of 18% in the nonheparinized dogs. These findings suggest that arterial hypoxemia following thromboembolism is due to ventilation-perfusion inequality caused by changes in lung mechanics.  相似文献   

2.
The development of intrapulmonary shunts with increased cardiac output during exercise in healthy humans has been reported in several recent studies, but mechanisms governing their recruitment remain unclear. Dobutamine and dopamine are inotropes commonly used to augment cardiac output; however, both can increase venous admixture/shunt fraction (Qs/Qt). It is possible that, as with exercise, intrapulmonary shunts are recruited with increased cardiac output during dobutamine and/or dopamine infusion that may contribute to the observed increase in Qs/Qt. The purpose of this study was to examine how dobutamine and dopamine affect intrapulmonary shunt and gas exchange. Nine resting healthy subjects received serial infusions of dobutamine and dopamine at incremental doses under normoxic and hyperoxic (inspired O(2) fraction = 1.0) conditions. At each step, alveolar-to-arterial Po(2) difference (A-aDo(2)) and Qs/Qt were calculated from arterial blood gas samples, intrapulmonary shunt was evaluated using contrast echocardiography, and cardiac output was calculated by Doppler echocardiography. Both dobutamine and dopamine increased cardiac output and Qs/Qt. Intrapulmonary shunt developed in most subjects with both drugs and paralleled the increase in Qs/Qt. A-aDo(2) was unchanged due to a concurrent rise in mixed venous oxygen content. Hyperoxia consistently eliminated intrapulmonary shunt. These findings contribute to our present understanding of the mechanisms governing recruitment of these intrapulmonary shunts as well as their impact on gas exchange. In addition, given the deleterious effect on Qs/Qt and the risk of neurological complications with intrapulmonary shunts, these findings could have important implications for use of dobutamine and dopamine in the clinical setting.  相似文献   

3.
Bidirectional central vascular shunts were measured during diving and breathing in air in unanesthetized bullfrogs by using pulmonary trapping of 38 mu mean diameter radionuclide-labelled microspheres. Six animals studied during diving exhibited a strong overall right-to-left shunting pattern comprised of both a predominant (68% mean) right-to-left shunt and a weak (23%) left-to-right countershunt. Five animals with access to air showed a variety of distribution patterns, including predominant shunts in the left-to-right (1 animal) and right-to-left (1 animal) directions, nearly complete mixing (2 animals) and separation of systemic and pulmonary venous returns (1 animal).  相似文献   

4.
The prevalence of a patent foramen ovale (PFO) is ~30%, and this source of right-to-left shunt could result in greater pulmonary gas exchange impairment at rest and during exercise. The aim of this work was to determine if individuals with an asymptomatic PFO (PFO+) have greater pulmonary gas exchange inefficiency at rest and during exercise than subjects without a PFO (PFO-). Separated by 1 h of rest, 8 PFO+ and 8 PFO- subjects performed two incremental cycle ergometer exercise tests to voluntary exhaustion while breathing either room air or hypoxic gas [fraction of inspired O(2) (FI(O(2))) = 0.12]. Using echocardiography, we detected small, intermittent boluses of saline contrast bubbles entering directly into the left atrium within 3 heart beats at rest and during both exercise conditions in PFO+. These findings suggest a qualitatively small intracardiac shunt at rest and during exercise in PFO+. The alveolar-to-arterial oxygen difference (AaDo(2)) was significantly (P < 0.05) different between PFO+ and PFO- in normoxia (5.9 ± 5.1 vs. 0.5 ± 3.5 mmHg) and hypoxia (10.1 ± 5.9 vs. 4.1 ± 3.1 mmHg) at rest, but not during exercise. However, arterial oxygen saturation was significantly different between PFO+ and PFO- at peak exercise in normoxia (94.3 ± 0.9 vs. 95.8 ± 1.0%) as a result of a significant difference in esophageal temperature (38.4 ± 0.3 vs. 38.0 ± 0.3°C). An asymptomatic PFO contributes to pulmonary gas exchange inefficiency at rest but not during exercise in healthy humans and therefore does not explain intersubject variability in the AaDO(2) at maximal exercise.  相似文献   

5.
The aspiration of gastric acid causes pulmonary edema and hypoxemia. One approach to the management of this syndrome is to raise cardiac output (Qt) and O2 delivery (QO2) to ensure tissue oxygenation (VO2) at the risk of increasing the edema. Another approach reduces the edema by reducing pulmonary microvascular pressure (Pmv) at the risk of reducing QO2 and VO2. We compared these approaches in 24 anesthetized, ventilated dogs with pulmonary wedge pressure (Ppw), a clinical approximation of Pmv, of 12.5 mmHg. Before and again 1 h after endobronchial instillation of 0.1 N HCl, we measured Qt, QO2, VO2, venous admixture, and in vivo extravascular lung liquid. The dogs were then randomly divided into four equal groups: 1) 12.5 mmHg Ppw, high Qt; 2) 7.5 mmHg Ppw, intermediate Qt; 3) 4.5 mmHg Ppw, low Qt; and 4) 4.5 mmHg Ppw plus dopamine, intermediate Qt. Measured values were followed for 4 more h, after which the lungs were excised to compare wet weight-to-body weight ratios (W/B). When plasmapheresis reduced Ppw at 1 h, edema did not increase further and W/B of groups 2 (21 +/- 3), 3 (18 +/- 3), and 4 (22 +/- 3) were significantly less than in group 1 (27 +/- 3) (P less than 0.001). Although Qt decreased with Ppw, increased hematocrit and reduced venous admixture maintained QO2 in group 2 but not in group 3. In group 4 an intermediate Qt maintained QO2 even at 4.5 mmHg Ppw but edema increased to the group 2 level presumably because Pmv rose with Qt on dopamine. VO2 remained constant over time in each group. These data demonstrate that canine HCl-induced pulmonary edema, measured in vivo or gravimetrically, is very sensitive to reductions in Pmv. Moreover, the lowest Pmv (and QO2) was well tolerated because an O2 supply dependency of VO2 was not observed.  相似文献   

6.
目的: 本研究旨在发现不同通气模式下动脉血气的变化特点。方法: 选择心功能正常,需要连续监测动脉血流动力学变化的患者6 例,4男2女,年龄(59.00±16.64)岁,体质量(71.67±10.37)kg,左心射血分数(LVEF)(61.33±2.16)%。患者签署知情同意书后,分别于正常呼吸、憋气20 s以及高潮气量过度通气状态下连续15~16次心跳桡动脉、颈静脉逐搏取血,测定PO2,用于分析三种呼吸状态下动、静脉血气的变化特点。分别比较患者相邻最高和最低值,以验证三种呼吸状态下动、静脉血气是否都存在周期性波浪式信号变化;此外,将患者动、静脉血气周期性波浪式信号的变化幅度进行统计学t检验分析,比较有无差异。结果: 共6例ICU 住院监护患者, 抽取动、静脉血液充满肝素化细长塑化管需要15~16次心跳,即取血需要15~16次心跳,全部覆盖超过2个呼吸周期。患者正常呼吸、憋气20 s以及高潮气量通气状态下动脉血气中PaO2呈现波浪式变化,幅度分别是(9.96±5.18)mmHg,(5.33±1.55)mmHg和(13.13±7.55)mmHg,分别是各自均值的(8.09±2.43)%,(5.29±2.19)%,(10.40±2.68)%,高通气量呼吸模式波浪式变化幅度大于正常呼吸模式(P<0.05),正常呼吸模式波浪式变化幅度大于憋气状态(P<0.05)。正常呼吸、憋气20 s以及高潮气量通气状态下静脉血气中PO2未呈现波浪式变化,幅度分别是(1.63±0.41)mmHg,(1.13±0.41)mmHg和(1.31±0.67)mmHg,分别是各自均值的(3.91±1.22)%,(2.92±1.12)%,(3.33±1.81)%,都显著低于同状态下动脉血气,但组间差异不明显。结论: 分别于三种通气状态下采用连续逐搏动脉取血血气分析法证实,患者高通气状态呼吸时动脉血气的周期性波浪式变化信号增强,憋气时波浪式呼吸变化信号变弱,而静脉血氧分压波浪式变化幅度于三种呼吸状态下都不明显。说明肺通气导致肺换气是影响动脉血液波浪式信号幅度的直接决定性因素。  相似文献   

7.
Atrial volume, pressure, and heart rate are considered the most important modulators of atrial natriuretic peptide (ANP) release, although their relative role is unknown. Continuous positive-pressure breathing in normal humans may cause atrial pressure and atrial volume to go in opposite directions (increase and decrease, respectively). We utilized this maneuver to differentially manipulate atrial volume and atrial pressure and evaluate the effect on ANP release. Effective filling pressure (atrial pressure minus pericardial pressure) was also monitored, because this variable has been proposed as another modulator of ANP secretion. We measured right atrial (RA) pressure, RA area, esophageal pressure (reflection of pericardial pressure), and RA and peripheral venous ANP in seven healthy adult males at rest and during continuous positive-pressure breathing (19 mmHg for 15 min). Continuous positive-pressure breathing decreased RA area (mean +/- SE, *P less than 0.05) 13.6 +/- 1.1 to 10.5 +/- 0.8* cm2, increased RA pressure 4 +/- 1 to 16 +/- 1* mmHg, increased esophageal pressure 2 +/- 1 to 12 +/- 1* mmHg, and increased effective filling pressure 2 +/- 0 to 4 +/- 1* mmHg. RA ANP increased from 67 +/- 17 to 91 +/- 18* pmol/l and peripheral venous ANP from 43 +/- 4 to 58 +/- 6* pmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
BackgroundOpen and endoscopic thoracic surgeries improve surgical exposure by One-lung ventilation (OLV). The aim of this study was to investigate the effects of different doses of dexmedetomidine on inflammatory response, oxidative stress, cerebral tissue oxygen saturation (SctO2) and intrapulmonary shunt in patients undergoing one-lung ventilation (OLV).MethodsSeventy-five patients undergoing open pulmonary lobectomy in our hospital from January 2016 to December 2017 were enrolled and randomly divided into high-dose dexmedetomidine group (group D1, 1 mg/kg, n=25), low-dose dexmedetomidine group (group D2, 0.5 mg/kg, n=25) and control group (group C, n=25). Then, arterial blood and internal jugular venous blood were taken before anesthesia induction (T0) and at 15 min after twolung ventilation (T1) and 5 min (T2) and 30 min (T3) after OLV for later use. Next, the changes in hemodynamic parameters [mean arterial pressure (MAP), heart rate (HR) and pulse oxygen saturation (SpO2)] of patients were observed in each group. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect serum inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)]. The changes in SctO2, arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt Qs/Qt (a measurement of pulmonary shunt: right-to-left shunt fraction) were observed. Additionally, the changes in lung function indicators like lung dynamic compliance (Cdyn) and airway peak pressure (Ppeak) were determined.ResultsThere were no statistically significant differences in the MAP, HR and SpO2 among three groups at each observation time point (P>0.05). At T2 and T3, the levels of serum IL-6, TNF-α and IL-8 were obviously decreased in group D1 and D2 compared with those in group C (P<0.05), and the decreases in group D1 were overtly larger than those in group D2, and the decreases at T3 were markedly greater than those at T2 (P<0.05). In comparison with group C, group D1 and D2 had notably reduced levels of serum reactive oxygen species (ROS) and MDA (P<0.05) and remarkably increased SOD content (P<0.05) at T2 and T3, and the effects were markedly better in group D1 than those in group D2. Besides, they were significantly superior at T3 to those at T2 (P<0.05). The SctO2 in group D1 and D2 was evidently lowered at T2 and T3 compared with that at T0, and the decrease in group D1 was distinctly smaller than that in group D2 (P<0.05). The Qs/Qt was significantly lower in group D1 and D2 than that in group C at T2 and T3 (P<0.05), while the PaO2 content was notably raised (P<0.05), and the decrease and increase were significantly larger in group D1 than those in group D2, and they were obviously greater at T3 to those at T2 (P<0.05). At T0 and T1, no significant differences were detected in the Cdyn, Pplat and Ppeak among three groups. At T2 and T3, the Cdyn was significantly elevated, while the Pplat and Ppeak overtly declined (P<0.05), and group D1 had greater changes in comparison with group D2, and the changes were obviously more evident at T3 to those at T2 (P<0.05).ConclusionsDexmedetomidine effectively ameliorates inflammatory response and oxidative stress, lowers oxygenation, Qs/Qt and the decrease in SctO2 and improves lung function during OLV, with good efficacy.  相似文献   

9.
We have recently shown that hyperoxemia alone or combined with umbilical cord occlusion causes continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990). We have not however analyzed the changes in the pattern of breathing associated with these events. To do this, we measured the changes in breathing pattern, electrocortical activity and behaviour on 29 occasions in 15 fetal sheep in late gestation. Fetuses were studied during rest, and during lung distention (about 30 cm H2O) with 100% nitrogen (control), 17% oxygen, 100% oxygen and umbilical cord occlusion. Lung distention was obtained using a high frequency oscillator (Senko Co) and in some fetuses a stroke volume of 0 to 20 cm H2O was used to keep PaCO2 near-constant. We found that lung distention with nitrogen or 17% oxygen did not alter the pattern of breathing or behaviour. In 12 out of 34 (35%) experiments 100% oxygen induced continuous breathing, PaO2 increasing to about 250 torr. In the remaining 22 experiments, PaO2 increased to about 100 torr only and breathing was not continuous but it became continuous upon cord occlusion; with occlusion there was a further increase in PaO2 to 190 torr. The increased breathing with oxygen and occlusion was associated with an increase in breathing output (integral of EMGdi x f), an increase in inspiratory drive (integral of EMGdi/Ti), and a decrease in inspiratory (Ti) and expiratory (Te) times. In ten experiments PaCO2 was kept near-constant and the magnitude of the changes remained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A model of pulmonary capillary gas exchange and venous admixture is presented and the inclusion of this model into a model of the entire respiratory system is discussed. Partial pressure and concentration gradients for nitrogen, helium, oxygen, and carbon dioxide are predicted. The cases of breathing room air and 10% oxygen are studied. In both of these studies the Bohr and Haldane effects are included, and the “physiological” dissociation curves of oxygen and carbon dioxide are predicted for the normal case as blood flows from the venous blood end of the capillary to the arterial blood end. Venous admixture effects are also calculated for both of these cases. The effects of emphysema, pulmonary congestion, and altered cardiac function on the gradients are studied.  相似文献   

11.
The effect of a progressive increase in right ventricular (RV) afterload was studied in pigs less than 24 h (group I) and 3-5 days old (group III). RV load was applied to increase mean pulmonary arterial pressure (Ppa) until right to left shunt was observed. Initially, pigs in group I had a significantly lower systemic arterial pressure (Psa = 63 +/- 2 vs. 82 +/- 5 mmHg) and higher Ppa (30 +/- 1 vs. 23 +/- 2 mmHg) even though the RV stroke work (RVSW) was similar (54.3 +/- 10.8 vs. 32.4 +/- 2.1 mmHg/ml) to group II. After a progressive rise in afterload, pigs in group I could maintain a higher RV stroke volume than those in group II (1.3 +/- 0.3 vs. 0.4 +/- 0.1 ml; P less than 0.05). At shunt condition, the RVSW was increased by 21 +/- 14% of the initial value in group I vs. a 32 +/- 8% decrease in group II (P less than 0.05). The ductus arteriosus was constricted and right-to-left shunt was observed in all animals at the foramen ovale level even though Ppa exceeded Psa before the rise in the right atrial pressure in group I. Thus, as RV afterload is increased in the pig, the older animals' right ventricle is progressively less capable of maintaining pulmonary blood flow than animals within 24 h of birth.  相似文献   

12.
Gas exchange in the tissues and lungs is accurately described by simple equations, and mathematical models of O(2) transport play a paramount role in the conceptual understanding of respiratory physiology. In the present paper, we review an integrative approach to describe maximum oxygen uptake in animals with tidally ventilated lungs. Further, we expand the analysis by including a central vascular shunt compartment to mimic the cardiovascular anatomy of embryonic birds and mammals as well as many ectothermic vertebrates. Finally, we predict the effects of right-to-left and left-to-right cardiac shunts on maximal oxygen uptake and present a new hypothesis that relates the interaction of metabolic rates and central shunts in air breathing ectothermic vertebrates.  相似文献   

13.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

14.
目的: 人动脉血来源是右心系统并在肺脏进行气体交换的静脉血,右心系统的静脉血是否存在波浪式信号目前尚没有证据支持,本研究旨在对比同时间动、静脉血中信号的连续变化特点。方法: 选择心功能正常,需要连续监测动脉血流动力学变化的患者6 例,4男2女,年龄(59.00±16.64) 岁,体质量(71.67±10.37)kg,左心射血分数(LVEF)(61.33±2.16)%。患者签署知情同意书后,选择心功能正常需要监测动、静脉血流动力学变化的患者6 例,连续同时桡动脉、颈内静脉逐搏取血,测定PaO2。选取2个典型呼吸周期,用于分析同时段动、静脉血气的波浪式变化。分别比较患者血氧分压最高和最低值,以验证同时段动、静脉血气是否都存在周期性波浪式信号变化。此外,将患者动脉、静脉血气周期性波浪式信号的变化幅度进行统计学t 检验分析,比较有无差异。结果: 共6例患者,抽取动、静脉血液充满肝素化细长塑化管需要15~16次心跳,即取血需要15~16次心跳,全部覆盖超过2个呼吸周期。所有患者动脉血气中PaO2均呈现明显的波浪式变化(P<0.05),幅度是(9.96±5.18)mmHg,是均值的(8.09±2.43)%。患者静脉血气中PaO2波动幅度并不明显,为(1.63±0.41)mmHg,是均值的(3.91±1.22)%,与动脉血气组相比有明显统计学差异(P<0.05)。结论: 采用同时连续逐搏动、静脉取血血气分析法证实,患者自主呼吸时动脉血气有明显的周期性波浪式变化信号,而静脉血气几乎没有周期性波浪式变化信号(很弱),说明动脉血气波浪式信号主要是由于肺通气过程中吸气和呼气期产生肺泡中氧分压规律性上升和下降,通过离开肺毛细血管与肺泡氧气压力平衡的动脉化血液,经过左心室搏血进入动脉血管系统所致。  相似文献   

15.
Previous work from this laboratory using near-infrared optical spectroscopy of myoglobin has shown that approximately 20% of the myocardium is hypoxic in buffer-perfused hearts that are perfused with fully oxygenated buffer at 37 degrees C. The present study was undertaken to determine cardiac myoglobin saturation in buffer-perfused hearts when cardiac contractility was increased with epinephrine and decreased during cardiac arrest with KCl. Infusion of epinephrine to achieve a doubling of contractility, as measured by left ventricular maximum pressure change over time (dP/dt), resulted in a decrease in mean myoglobin saturation from 79% at baseline to 65% and a decrease in coronary venous oxygen tension from 155 mmHg at baseline to 85 mmHg. Cardiac arrest with KCl increased mean myoglobin saturation to 100% and coronary venous oxygen tension to 390 mmHg. A previously developed computer model of oxygen transport in the myocardium was used to calculate the probability distribution of intracellular oxygen tension and the hypoxic fraction of the myocardium with an oxygen tension below 0.5 mmHg. The hypoxic fraction of the myocardium was approximately 15% at baseline, increased to approximately 30% during epinephrine infusion, and fell to approximately 0% during cardiac arrest. The coronary venous adenosine concentration changed in parallel with the hypoxic fraction of the myocardium during epinephrine and KCl. It is concluded that catecholamine stimulation of buffer-perfused hearts increases hypoxia in the myocardium and that the increase in venous adenosine concentration is a reflection of the larger hypoxic fraction of myocardium that is releasing adenosine.  相似文献   

16.
The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.  相似文献   

17.
Pulmonary gas exchange in Andean natives (n = 8) with excessive high-altitude (3,600-4,200 m) polycythemia (hematocrit 65.1 +/- 6.6%) and hypoxemia (arterial PO2 45.6 +/- 5.6 Torr) in the absence of pulmonary or cardiovascular disease was investigated both before and after isovolemic hemodilution by use of the inert gas elimination technique. The investigations were carried out in La Paz, Bolivia (3,650 m, 500 mmHg barometric pressure). Before hemodilution, a low ventilation-perfusion (VA/Q) mode (VA/Q less than 0.1) without true shunt accounted for 11.6 +/- 5.5% of the total blood flow and was mainly responsible for the hypoxemia. The hypoventilation with a low mixed venous PO2 value may have contributed to the observed hypoxemia in the absence of an impairment in alveolar capillary diffusion. After hemodilution, cardiac output and ventilation increased from 5.5 +/- 1.2 to 6.9 +/- 1.2 l/min and from 8.5 +/- 1.4 to 9.6 +/- 1.3 l/min, respectively, although arterial and venous PO2 remained constant. VA/Q mismatching fell slightly but significantly. The hypoxemia observed in subjects suffering from high-altitude excessive polycythemia was attributed to an increased in blood flow perfusing poorly ventilated areas, but without true intra- or extrapulmonary shunt. Hypoventilation as well as a low mixed venous PO2 value may also have contributed to the observed hypoxemia.  相似文献   

18.
The purpose of this project was to collate canine cardiopulmonary measurements from published and unpublished studies in our laboratory in 97 instrumented, unsedated, normovolemic dogs. Body weight; arterial and mixed-venous pH and blood gases; mean arterial, pulmonary arterial, pulmonary artery occlusion, and central venous blood pressures; cardiac output; heart rate; hemoglobin; and core temperature were measured. Body surface area; bicarbonate concentration; base deficit; cardiac index; stroke volume index, systemic and pulmonary vascular resistance indices; left and right cardiac work indices; alveolar partial pressure of oxygen (pO2) ; alveolar-arterial pO2 gradient (A-apO2); arterial, mixed-venous, and pulmonary capillary oxygen content; oxygen delivery; oxygen consumption; oxygen extraction; venous admixture; arterial and mixed-venous blood CO2 contents; and CO2 production were calculated. In the 97 normal, resting dogs, mean arterial and mixed-venous pH were 7.38 and 7.36, respectively; partial pressure of carbon dioxide (pCO2), 40.2 and 44.1 mm Hg, respectively; base-deficit, -2.1 and -1.9 mEq/liter, respectively; pO2, 99.5 and 49.3 mm Hg, respectively; oxygen content, 17.8 and 14.2 ml/dl, respectively; A-a pO2 was 6.3 mm Hg; and venous admixture was 3.6%. The mean arterial blood pressure (ABPm), mean pulmonary arterial blood pressure (PAPm), pulmonary artery occlusion pressure (PAOP) were 103, 14, and 5.5 mm Hg, respectively; heart rate was 87 beats/min; cardiac index (CI) was 4.42 liters/min/m2; systemic and pulmonary vascular resistances were 1931 and 194 dynes.sec.cm-5, respectively; oxygen delivery, consumption and extraction were 790 and 164 ml/min/m2 and 20.5%, respectively. This study represents a collation of cardiopulmonary values obtained from a large number of dogs (97) from a single laboratory using the same measurement techniques.  相似文献   

19.
Carboxyhemoglobin (COHb) formation is triggered by the inducible isoform of heme oxygenase (HO-1) catalyzing carbon monoxide (CO) production through breakdown of heme molecules, exposure to CO or both. In the setting of CO poisoning, COHb is regarded as a reliable marker characterizing both severity of injury and efficacy of treatment strategies. This study was designed as a prospective laboratory experiment to elucidate potential interdependencies between COHb generation, oxygenation, and pulmonary shunt fraction (Qs/Qt) in an ovine model of smoke inhalation injury. Chronically instrumented ewes (n=15) were repeatedly subjected to cotton smoke (4 x 12 breaths) according to an established protocol. This approach resulted in a progressive increase in COHb formation that was interrelated with the degree of Qs/Qt (P<0.001) and inversely correlated with both arterial and mixed venous HbO(2) saturation (r=-0.96 and -0.93). Although the arteriovenous COHb gradient successively decreased over time, COHb determined in venous blood underestimated the arterial content.  相似文献   

20.
Progressive hyperoxia caused a gradual increase in arterial blood oxygen tension (PaO2). Initially there was no change in venous O2 tension (PvO2) but in extreme hyperoxia (PO2 650 mmHg) it increased to 2.5 times the normoxic (PO2 150 mmHg) level (Table 1). Ventilation frequency gradually decreased down to 73% of the normoxic value as PO2 rose towards a maximum at 700 mmHg (Fig. 1). In moderately hyperoxic water (mean PO2 233 mmHg) heart rate (fH) increased significantly above the normoxic level. Further increases in ambient PO2 caused a progressive reduction in fH to a level significantly below the normoxic rate in extreme hyperoxia (Fig. 2). Injection of atropine abolished these changes, and the atropinized fH was similar to that measured during moderate hyperoxia. The initial increase in fH during progressive hyperoxia is attributed to release of vagal tone, due to removal of normoxic stimulation of peripheral oxygen receptors; whereas, the secondary bradycardia is attributed to the stimulation of oxygen receptors located in the venous system. Injection of 5 ml of hyperoxaemic blood into the venous system of normoxic fish caused a transient bradycardia (Fig. 3), lasting a mean of 73 sec, which is the approximate time for passage of the blood volume of the venous system through the heart. This bradycardia was neither pH dependent nor a pressor response and provides supporting evidence for the existence of a venous oxygen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号