首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of the unicellular green alga Closterium ehrenbergii elongatedexclusively at septa and for 4–5 hours after cell division.Cell elongation was strongly inhibited by a decrease in eitherthe external concentration of Ca2+ or pH, and was also inhibitedby several competitive Ca2+ channel blockers. Changes in concentrationsof other external ions had no effect on the elongation. Theaverage concentrations of ions in the intracellular fluid ofthe interphase cell before cell division was as follows (inmM): K+=56.5, Na+=4.8, Ca2+=2.4, Mg2+=1.3, Cl=59.5; thepH was 7.4. The levels of K+, Na+ and Cl ions decreasedsignificantly with cell elongation, suggesting that this process,which proceeds with water uptake, surpasses ion absorption.The plasma membrane potential (Vm) in both the interphase cellsand in the elongating cells was in the range of –90 to–105 mV (interior negative). The Vm was entirely determinedby the simple diffusion of K+. A decrease in the external concentrationof Ca2+ caused depolarization, probably by an indirect effectof low Ca2+. Changes in the extracellular level of H+ and othercations barely affected Vm. Thus, external Ca2+ and H+ are concludedto affect cell elongation but not via a change in the Vm acrossthe plasma membrane. (Received February 29, 1988; Accepted June 8, 1988)  相似文献   

2.
The breakdown phenomenon in the Chara internodal cell was studiedusing the voltage clamp technique. When a slowly hyperpolarizingramp potential pulse was applied to the Chara membrane, thebreakdown occurred with hyperpolarization of about 220 mV. Thebreakdown was observed by less hyperpolarization, if the externalK+ concentration was increased. Such a breakdown phenomenonin the Chara membrane was caused principally by a large shiftof the membrane electromotive force toward depolarization. Thisshift frequently exceeded the peak level of the action potential. (Received July 26, 1976; )  相似文献   

3.
Cytoplasmic drops were prepared from internodal cells of thebrackish Characeae Lamprothamnium succinctum. Applying the patch-clamptechnique to single drops covered with tonoplast, we demonstratedthe presence of Ca2+-regulated K+ channels in the tonoplast.In a cell-attached mode, the selectivity of such channels forK+ was about 50 times that for Na+. This channel showed a tendencyto rectify in an outward direction. In the negative region ofthe pipette voltage, the conductance of this channel was 50pS, while it was 100 pS in the positive voltage region. Whenthe pipette voltage was increased above 50 mV, two conductancelevels were found in the cell-attached mode as well as in theexcised patch (cytoplasmic-side-out patch), which was obtainedby pulling the patch pipette from the cytoplasmic drop underconditions of low levels of Ca2+. Using the excised patch, wecontrolled the level of Ca2+ on the cytoplasmic side of thechannels. At a low level of Ca2+ (pCa=8) on the cytoplasmicside, the open frequency was very low and the opening time wasshort. An increase in Ca2+ on the cytoplasmic side (pCa = 5)increased both the frequency and the duration of opening. However,the conductance of the channels did not change. This regulationby Ca2+ of the K+ channels was reversible, that is, additionof EGTA on the cytoplasmic side inactivated the channels. Thepresent study demonstrates a direct action of Ca2+ on the K+channels. The physiological role of the K+ channel in the regulationof turgor in Lamprothamnium is discussed. (Received January 9, 1989; Accepted March 8, 1989)  相似文献   

4.
Membrane Potentials in Excitable Cells of Aldrovanda vesiculosa Trap-Lobes   总被引:1,自引:0,他引:1  
The resting membrane potential in excitable cells of Aldrovandatrap-lobes is composed of diffusion and electrogenic potentials.The diffusion potential, about –100 mV in artificial pondwater, was determined from the external K+ and Na+ concentrations.The permeability ratio, PNa/PK of the membrane was estimatedto be about 0.3. The electrogenic potential hyperpolarized themembrane to about –140 mV. The peak value of the actionpotential increased by +26 mV with a tenfold increase in theexternal Ca2+ concentration. The action potential was blockedby an application of the Ca2+ chelater or the Ca channel blocker,LaCl3. Cells showed additional Ca2+ influx (7.8 pmole/cm2 impulse)during membrane excitation. These facts suggest that the transientincrease in Ca2+ influx causes the action potential presentin cells of Aldrovanda trap-lobes. 1 Present address: Jerry Lewis Neuromuscular Research Center,School of Medicine, University of California Los Angeles, LosAngeles, CA90024, U.S.A. 2 Present address: Biological Laboratory, Kyoritsu Women's University,Hachioji 193, Japan. (Received September 21, 1983; Accepted September 7, 1984)  相似文献   

5.
The electromotive force E and the conductance G of the Characorallina plasmalemma were measured under voltage clamp conditions.In the depolarized voltage range less negative than –60mV, E changed according to the Nerhst equation for K+, and Gincreased with the external K+ concentration [K+]o and alsowith the depolarization of the membrane potential. This is attributedto the voltage-dependent opening of the K+ channels in the largelydepolarized voltage region. The voltage-dependent increase ofG was due to the increase of the number of open K+ channelsper unit area. The density of the total K+ channels in the C. corallina plasmalemmawas estimated to be about 6.50/(10 µm)2. The single K+channel conductance K changed with the external [K+]o; it was79.3, 86.1, 105.9, 119.0 pS for external [K+]o of 0.2, 0.5,2.0 and 5.0 mu respectively. (Received May 22, 1986; Accepted August 22, 1986)  相似文献   

6.
In order to express selectivity of ion channels, it is commonto determine the reversal voltages, Vr in the presence of differention species, and to convert these voltages to permeability ratiosby constant field equations, which are based on independentelectro-diffusion. In the case of individual ion channels, competitionrather than independence can be expected. This situation hasbeen described here in terms of a catalytic reaction cycle fora channel which may translocate K+ as well as Ca2+ . An exampleis given, where the fundamental rate constants for the K+ cycleand for the Ca2+ cycle are the same, and opposing 1:10 concentrationgradients for Ca2+ and for K+ are applied. In this case, thereversal voltage of the resultant total current is so closeto the equilibrium voltage of Ca2+, that constant field calculationwould yield an overestimated permeability ratio PCa:PK of about10. Two limiting cases are pointed out. In the case of dilutesolution, the ions move independently and the system can obeythe constant field theory. At high concentrations, the systemapproaches complete dependence and will consequently behaveas an antiporter. Key words: Antiport, calcium permeability, channel selectivity, competitive catalysis, enzyme kinetics  相似文献   

7.
Activation of K+-Channel in Membrane Excitation of Nitella axilliformis   总被引:1,自引:0,他引:1  
Two processes of the K+ channel activation in plasma membraneexcitation are suggested for Nitella axilliformis. One is relatedto the repolarizing process in the action potential and theother to the after-hyperpolarization (AH). Extra- and intracellulartetraethylammonium (TEA+) and extracellular Co2+ prolonged theaction potential, indicating involvement of K+ channel activationin the repolarizing process of the action potential. The following findings showed that AH is caused by K+ channelactivation. First, AH was inhibited by extracellular K+ andRb+ but not by Na+ and Li+. Second, it was not inhibited byintracellular TEA+ but by extracellular TEA+. Third, the membraneconductance increased during AH. Generation of AH was dependenton the level of the resting membrane potential [(Em)rest] whichis affected by the activity of the electrogenic H+ pump. AHwas generated, when (Em)rest was more positive than a criticalvalue, which was supposed to be the equilibrium potential forK+ across the plasma membrane. Since extracellular Ca2+ competed with extracellular TEA+ andCo2+ in prolonging the action potential, and sometimes in inhibitingAH, Ca2+ may be involved in the K+ channel activation. (Received June 11, 1983; Accepted September 21, 1983)  相似文献   

8.
Significance of Ca2+ and K+ for the complex morphogenesis ofMicrasterias, which takes place through multipolar tip growth,was investigated. Studies with different external Ca2+ concentrationsand Ca2+ channel inhibitors LaCl3 and verapamil indicate thatCa2+ and Ca2+ channels are essential in the development, whiletreatments with different K+ concentrations and K+ channel inhibitorTEA demonstrate that potassium or K+ channels are not neededin the process, albeit the existence of K+ channels. K+ is notneeded even for the regulation of turgor pressure, which wasfound to decrease clearly during cell development. The plasmamembrane ATPase inhibitors diethylstilbesterol (DES) and Na-orthovanadatestop morphogenesis and indicate the importance of ion pumpsin the developmental process. Both supraoptimal, external K+and Ca2+ cause abundant Ca2+ precipitate formation in chloroplasts,which shows that chloroplasts are important in regulation ofcytoplasmic Ca2+ metabolism and that K+ activates the uptakeof Ca2+ through Ca2+ channels. (Received June 13, 1995; Accepted September 13, 1996)  相似文献   

9.
The role of cytoplasmic calcium activity in activation of K+-channelsin the unicellular green alga Eremosphaera viridis has beenstudied. As reported previously, after a ‘light off’signal a voltage independent opening of K+-channels in the plasmalemmais observed. This effect is indicated by a transient polarization(TP) with a simultaneous increase of the membrane conductance.TPs can also be triggered by different treatments, which allowinvestigations within a ‘short-circuited’ signalchain. (i) After incubation with EGTA a single extended TP canbe released by a sudden increase of the external calcium concentration.The Ca2+-channel inhibitors nifedipine (10 –2 mol m–3)and verapamil (5 ? 10–2 mol m–3) suppress the releaseof this TP. (ii) In the presence of external calcium the additionof the ionophore A23187 [GenBank] (10–3 mol m–3) causes anextremely prolonged TP. (iii) Low external concentrations ofbarium (10–2 mol m–3) induce repetitive TPs in thepresence of external calcium. In this case the Ca2+-channelinhibitors are less effective. (iv) Strontium (0.1–1.0mol m–3) is able to trigger repetitive TPs even withoutexternal calcium. Whereas barium may stimulate a calcium influx,strontium can serve as a substitute for calcium to induce anopening of K+-channels. These results indicate strongly a Ca2+-dependentand voltage-independent activation of K+-channels in the plasmalemmaof Eremosphaera. The participation of cytoplasmic calcium inthe signal transduction chain after a ‘light off’signal is discussed. Key words: Ca2+-dependent K+-channels, Ca2+-channel effectors, A23187, transient membrane potential, Eremosphaera  相似文献   

10.
In response to hypotonic treatment internodal cells of the brackishwater Characeae Lamprothamnium regulate turgor pressure by releasingK+ and Cl, accompanying membrane depolarization and atransient increase in membrane electrical conductance (Okazakiet al. 1984b). The hypothesis that a transient increase in cytoplasmicfree Ca2+ concentration ([Ca2+]c) caused by hypotonic treatmenttriggers release of K+ and Cl from the cell (Okazakiand Tazawa 1986a, b, c) was tested using tonoplast-removed cells.These cells did not regulate turgor pressure. The plasmalemmaconductance remained almost constant for a change in the intracellularfree Ca2+ concentration ([Ca2+],) from 10–6 to 10–2mol?m–3. The results suggest that some cytoplasmic Ca2+-sensitizingsoluble components, which work as mediators to activate K+ and/orCl channels in the plasmalemma and/or the tonoplast,were lost after desintegration of the tonoplast. The plasmalemmapotential was depolarized under high [Ca2+]i. However, no membranedepolarization was observed upon hypotonic treatment. Sincemembrane depolarization has been suggsted to occur under normal[Ca2+]c in intact cells (Okazaki and Tazawa 1986a, b), its absencesuggests that some cytoplasmic factors, which induce the membranedepolarization in a Ca2+-independent manner, are lost in tonoplast-removedcells. 1 Present address: Department of Biology, Osaka Medical College,Sawaragi-cho 2-41, Takatsuki, Osaka 569, Japan. (Received October 22, 1986; Accepted March 31, 1987)  相似文献   

11.
Tonoplast Action Potential of Characeae   总被引:2,自引:0,他引:2  
The plasmalemma action potential was found to be indispensableto the production of the tonoplast action potential. In a solutionlacking Ca2+ and containing other divalent cations such as Ba2+,Mg2+ or Mn2+, the plasmalemma excited in Nitella but did notin Chara. In Nitella, however, both the tonoplast action potentialand EC-coupling were abolished due to depletion of Ca2+ fromthe external medium. Ca2+ ions injected into the cytoplasmiclayer caused a transient change in both plasmalemma and tonoplastpotentials. These results suggest that a transient rise in Ca2+concentration during excitation of the plasmalemma may triggerthe tonoplast action potential. (Received February 14, 1986; Accepted August 29, 1986)  相似文献   

12.
The possiblerole of altered extracellular Ca2+concentration([Ca2+]o)in skeletal muscle fatigue was tested on isolated slow-twitch soleusand fast-twitch extensor digitorum longus muscles of the mouse. Thefollowing findings were made. 1) Achange from the control solution (1.3 mM[Ca2+]o)to 10 mM[Ca2+]o,or to nominally Ca2+-freesolutions, had little effect on tetanic force in nonfatigued muscle.2) Almost complete restoration oftetanic force was induced by 10 mM[Ca2+]oin severely K+-depressed muscle(extracellular K+ concentration of10-12 mM). This effect was attributed to a 5-mV reversal of theK+-induced depolarization andsubsequent restoration of ability to generate action potentials(inferred by using the twitch force-stimulation strength relationship).3) Tetanic force depressed bylowered extracellular Na+concentration (40 mM) was further reduced with 10 mM[Ca2+]o.4) Tetanic force loss at elevatedextracellular K+ concentration (8 mM) and lowered extracellular Na+concentration (100 mM) was partially reversed with 10 mM[Ca2+]oor markedly exacerbated with low[Ca2+]o.5) Fatigue induced by using repeatedtetani in soleus was attenuated at 10 mM[Ca2+]o(due to increased resting and evoked forces) and exacerbated at low[Ca2+]o.These combined results suggest, first, that raised[Ca2+]oprotects against fatigue rather than inducing it and, second, that aconsiderable depletion of[Ca2+]oin the transverse tubules may contribute to fatigue.

  相似文献   

13.
Effluxes of K+ and Ca2+ from root segments of both wheat, Triticunaestivum L. cv. Capelle and mung bean, Vigna radiata (L.) Wilczek,were measured in the presence or absence of 20 mol m–3para-fluorophenylalanine (p-FPA). The results were used to estimatethe compartment contents and transmembrane K+ and Ca2+ fluxesin root cortex cells. Using the Ussing-Teorell flux equationas the criterion, it was concluded that entry of K+ from theoutside solution to the cytoplasm, and from the cytoplasm tothe vacuole were active in both wheat and mung bean. Also, inboth species, Ca2+ entered the cytoplasm passively across theplasmalemma and was actively pumped back to the external solution.However, interpretation of the direction of active transportacross the tonoplast depends upon an assumption about Ca2+ activityin the cytoplasm. The only qualitative effect of p-FPA was to alter the drivingforce for K+ influx, across the plasmalemma in wheat, from anactive to a passive one. Quantitative effects of the analoguewere seen for K+ fluxes in both wheat and mung bean and forCa2+ fluxes in wheat. The p-FPA reduced transport of K+ in bothspecies, while transport of Ca2+ was unaffected. The implicationsof these results for the ‘two pump hypothesis’ arediscussed. Key words: Triticum aestivum, Vigna radiata, Two pump hypothesis  相似文献   

14.
We examined a role of Ca2+ in the activation of the two majorion channels, i.e., Cl and K+ channels at the excitationof the characean plasmalemma. The current-voltage relation (I-Vcurve) of the Chara membrane was compared under the ramp voltageclamp condition before and after external application of 20µMof La3+ (a Ca2+ channel blocker). The transient inward currentcomponent, which is carried mainly by the efflux of Cl,disappeared almost completely in about 30 min with La3+ treatment.On the other hand, no effect was observed on the late largeoutward current, which is mainly carried by the efflux of K+in a large depolarization region (less negative than –50mV). These results suggest that the Cl channel in theChara plasmalemma is activated by Ca2+ influx, while the K+channel is simply activated by depolarization. (Received April 7, 1986; Accepted June 6, 1986)  相似文献   

15.
A depolarization-activated outwardly-rectifying channel (OR),most likely involved in the passive release of K+ from the rootsymplasm into the stelar apoplast (for subsequent transportto the shoot via the xylem vessels), has been characterizedin the plasma membrane of maize root stelar cells (Roberts andTester, 1995). In the present study, the selectivity of thischannel was further characterized using single channel current-voltagecurves generated using a voltage ramp protocol. This protocolpermitted the accurate and unambiguous measurement of the reversalpotentials of currents resulting from single channel openings.Using the voltage ramp protocol, it was shown that the OR allowsboth K+ efflux and Ca2+ influx at potentials positive of EKand negative of ECa. The OR had a PCa/PK of 1.72–0.21decreasing as extracellular Ca2+ was increased. The permeabilityof the OR for monovalent cations other than K+ was also investigated.In biionic conditions, a relative permeability sequence of was determined (i.e. Eisenman sequenceIV). The physiological implications of the selectivity of theOR are discussed. Key words: Maize roots, K+ channel selectivity, Ca2+ permeation  相似文献   

16.
In semicells of the unicellular green alga Closterium that areundergoing elongation, transcellular ion currents enter theelongating region of the cell and leave via the non-elongatingregion of the cell, as in the case of many other tip-growingorganisms. The density of the inwardly and outwardly directedcurrents was 142.5±63.7 nA cm–2 (n=42) and 109.3±46.5nA cm–2 (n=33), respectively, at the respective regionsof the cells. Both currents clearly decreased with decreasesin the external concentration of Ca2+ ions, and they were completelyblocked by addition of Ca2+-channel blockers, such as 20 µMLaCl3, to the external medium. Increases in pH up to 10.2 hadno effect on the currents, but a decrease in pH from 7.5 to5.7 or 4.5 resulted in an explosive increase in the currents.Removal of external K+ and Cl ions induced some increasesin the currents, but removal of external Na+ Mg2+ plus and ions had little effect on the currents. A major part of thecurrents may be carried by Ca2+ ions, while H+, K+ and Clions may play a minor role as members of the group of ions thatcarry the currents. Thus, there is a clear relationship betweenCa2+ ion currents and elongation in Closterium. (Received April 30, 1992; Accepted July 13, 1992)  相似文献   

17.
Phototropins (phot1 and phot2) are blue light (BL) receptorsthat mediate responses including phototropism, chloroplast movementand stomatal opening, and increased cytosolic Ca2+. BL absorbedby phototropins activates plasma membrane H+-ATPase in guardcells, resulting in membrane hyperpolarization, and drives K+uptake and stomatal opening. However, it is unclear whetherthe phototropin-mediated Ca2+ increase activates the H+-ATPase.Here, we determined cytosolic Ca2+ concentrations in guard cellprotoplasts (GCPs) from Arabidopsis transformed with aequorin.Cytosolic Ca2+ increased rapidly in response to BL in GCPs fromboth the wild type and phot1 phot2 double mutants, but was mostlysuppressed by an inhibitor of photosynthetic electron flow (DCMU).With depleted external K+, we observed another slower Ca2+ increase,which was phototropin- dependent. Fusicoccin, a H+-ATPase activator,mimicked the effect of BL. The slow Ca2+ increase thus appearsto result from membrane hyperpolarization. The slow Ca2+ increasewas suppressed by external K+ and was restored by blockers ofinward-rectifying K+ channels, CsCl and tetraethylammonium,suggesting the preferential uptake of K+ over Ca2+. Such efficientK+ uptake in response to BL was not found in mesophyll cells.Both the fast and the slow Ca2+ increases were inhibited byCa2+ channel blockers (CoCl2 and LaCl3) and a chelating agent(EGTA). These results indicate that the phototropin-mediatedCa2+ increase was not observed prior to H+-ATPase activationin guard cells and that Ca2+ entered guard cells via Ca2+ channelsthrough photosynthesis and phototropin-mediated membrane hyperpolarization.  相似文献   

18.
The extent to which Spartina alterniflora Loisel. excluded,secreted or accumulated the major seawater ions (Cl-, SO2-4,Na+, K+, Mg2+, and Ca2+) was investigated under varying salinitytreatments. From a quantitative viewpoint, ion exclusion wasmost prominent and accounted for 91–97% of the theoreticalmaximum ion uptake as a result of transpiration and growth.Of those ions taken up, approximately half was secreted fromthe shoots. Relative to K+, a disproportionate amount of Na+was excluded at the roots and secreted by the shoots. The concentrationwithin the tissues of S. alterniflora did not change with salinitytreatment for the majority of the ions examined, but Na+ wasmore than twice as concentrated at 40 g dm-3 than at lOgdm-3.Calculations of the flux of ions from salt marsh sediments tothe flood water via shoot secretion or stem/leaf turnover indicatethat these processes may be important to the ecology of S. alternifloraas mechanisms that limit the accumulation of salt within theroot zone.  相似文献   

19.
Hyperpolarization in human leukemia THP-1 monocytes adherent tovascular cell adhesion molecule (VCAM)-1 is due to an induction ofinwardly rectifying K+ currents(Iir) (Colden-Stanfield M and Gallin EK,Am J Physiol Cell Physiol 275: C267-C277, 1998).We determined whether the VCAM-1-induced hyperpolarization issufficient to augment the increase in intracellular free calcium([Ca2+]i) produced by Ca2+ storedepletion with thapsigargin (TG) and readdition of external CaCl2 in fura 2-loaded THP-1 monocytes. Whereas there was a2.1-fold increase in [Ca2+]i in monocytesbound to glass for 5 h in response to TG and CaCl2 addition, adherence to VCAM-1 produced a 5-fold increase in[Ca2+]i. Depolarization of monocytes adherentto VCAM-1 by Iir blockade or exposure to high[K+] abolished the enhancement of the peak[Ca2+]i response. In monocytes bound toglass, hyperpolarization of the membrane potential with valinomycin, aK+ ionophore, to the level of hyperpolarization seen incells adherent to VCAM-1 produced similar changes in peak[Ca2+]i. Adherence of monocytes to E-selectinproduced a similar peak [Ca2+]i to cellsbound to glass. Thus monocyte adherence to the physiological substrateVCAM-1 produces a hyperpolarization that is sufficient to enhanceCa2+ entry and may impact Ca2+-dependentmonocyte function.

  相似文献   

20.
Membrane potentials of protoplasts isolated from Vigna mungohypocotyl segments were measured using the fluorescent probediS-C3-(5). The fluorescence intensity changed in response tothe external K+ concentration. Membrane potential was estimatedto be inside negative (–85?8 mV at 0.1 mM KCl) from theNernst equation for K+. The membrane potential was not affectedby DCCD (50 µM) or low temperature (5?C). Addition of0.5 mM Ca2+ to the protoplast suspension markedly depolarizedthe membrane potential, and subsequent EDTA treatment repolarizedit to the initial level. The Ca2+ effect on the membrane potentialmay be due to change in the permeability ratio of Clto K+. (Received December 16, 1986; Accepted April 22, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号