首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The procedure generally used for the isolation of extracellular, cell-associated proteinases of Lactococcus lactis species is based on the release of the proteinases by repeated incubation and washing of the cells in a Ca2+-free buffer. For L. lactis subsp. cremoris Wg2, as many as five incubations for 30 min at 29°C are needed in order to liberate 95% of the proteinase. Proteinase release was not affected by chloramphenicol, which indicates that release is not the result of protein synthesis during the incubations. Ca2+ inhibited, while ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) stimulated, proteinase release from the cells. The pH optimum for proteinase release ranged between 6.5 and 7.5, which was higher than the optimum pH of the proteinase measured for casein hydrolysis (i.e., 6.4). Treatment of cells with the serine proteinase inhibitor phenylmethylsulfonyl fluoride prior to the incubations in Ca2+-free buffer reduced the release of the proteinase by 70 to 80%. The residual proteinase remained cell associated but could be removed by the addition of active L. lactis subsp. cremoris Wg2 proteinase. This suggests that proteinase release from cells of L. lactis subsp. cremoris Wg2 is the result of autoproteolytic activity. From a comparison of the N-terminal amino acid sequence of the released proteinase with the complete amino acid sequence determined from the nucleotide sequence of the proteinase gene, a protein of 180 kilodaltons would be expected. However, a proteinase with a molecular weight of 165,000 was found, which indicated that further hydrolysis had occurred at the C terminus.  相似文献   

2.
In order to gain insights into the structural basis of the multifunctional Dna2 enzyme involved in Okazaki fragment processing, we performed biochemical, biophysical and genetic studies to dissect the domain structure of Dna2. Proteolytic digestion of Dna2 using subtilisin produced a 127 kDa polypeptide that lacked the 45 kDa N-terminal region of Dna2. Further digestion generated two subtilisin-resistant core fragments of approximately equal size, 58 and 60 kDa. Surprisingly, digestion resulted in a significant (3- to 8-fold) increase in both ATPase and endonuclease activities compared to the intact enzyme. However, cells with a mutant DNA2 allele lacking the corresponding N-terminal region were severely impaired in growth, being unable to grow at 37°C, indicating that the N-terminal region contains a domain critical for a cellular function(s) of Dna2. Analyses of the hydrodynamic properties of and in vivo complex formation by wild-type and/or mutant Dna2 lacking the N-terminal 45 kDa domain revealed that Dna2 is active as the monomer and thus the defect in the mutant Dna2 protein is not due to its inability to multimerize. In addition, we found that the N-terminal 45 kDa domain interacts physically with a central region located between the two catalytic domains. Our results suggest that the N-terminal 45 kDa domain of Dna2 plays a critical role in regulation of the enzymatic activities of Dna2 by serving as a site for intra- and intermolecular interactions essential for optimal function of Dna2 in Okazaki fragment processing. The possible mode of regulation of Dna2 is discussed based upon our recent finding that replication protein A interacts functionally and physically with Dna2 during Okazaki fragment processing.  相似文献   

3.
Recently we reported a preliminary characterization of anti-elastase activity which is found in cultured keratinocytes and in epidermis from psoriasis patients, but not in normal human epidermis. Here we present evdence that this inhibitory activity is derived from a cationic protein with a molecular mass of 18 kDa. In psoriatic scales the inhibitor is mainly present as a biologically active 11 kDa fragment. Inhibition of human leukocyte elastase in strong (Ki = 2·10?11 M) and fast (kon = 107 M?1·?1). Using chromatofocusing, affinity chromatography and gel-permeation FPLC, the 11 kDa fragment was purified from psoriatic scales. This preparation was reduced and carboxymethylated, blotted into (vinylidene difluoride) membrane and subjected to N-terminal gas-phase sequencing. Within a stretch of 16 amino acids a 40% homology was found with the active site of antileukoproteinase (ALP) a known serine proteinase inhibitor present in mucous secretions. We therefore propose the acronym SKALP (skin-derived antileukoproteinase) as a name for this elastase inhibitor.  相似文献   

4.
Twelve monoclonal antibodies directed to the cell-wall-associated proteinase of Lactococcus lactis subsp. cremoris Wg2 were isolated after immunization of BALB/c mice with a partially purified preparation of the proteinase. The monoclonal antibodies reacted with the 126-kilodalton proteinase band in a Western immunoblot. All but one of the monoclonal antibodies reacted with protein bands with a molecular weight below 126,000, possibly degradation products of the proteinase. The monoclonal antibodies could be divided into six groups according to their different reactions with the proteinase degradation products in the Western blot. Different groups of monoclonal antibodies reacted with different components of the L. lactis subsp. cremoris Wg2 proteinase. Crossed immunoelectrophoresis showed that monoclonal antibody groups I, II, and III react with proteinase component A and that groups IV, V, and VI react with proteinase component B. The isolated monoclonal antibodies cross-reacted with the proteinases of other L. lactis subspecies. Monoclonal antibodies of group IV cross-reacted with proteinase component C of other L. lactis subsp. cremoris strains. The molecular weight of the proteinase attached to the cells of L. lactis subsp. cremoris Wg2 was 200,000, which is different from the previously reported values. This could be analyzed by immunodetection of the proteinase on a Western blot. This value corresponds to the molecular weight calculated from the amino acid sequence of the cloned L. lactis subsp. cremoris Wg2 proteinase gene.  相似文献   

5.
A chromosomal fragment of 6.7 megadaltons (MDa), apparently containing the genes for milk protein utilization by Streptococcus lactis subsp. lactis SSL135, was cloned in S. lactis subsp. lactis MG1614, a proteinase-negative strain. For the cloning, the chromosomal DNA of SSL135 was cleaved with restriction enzyme BamHI and the resulting fragments were ligated to the single BclI site of pVS2, a 3.3-MDa chloramphenicol-erythromycin double-resistance plasmid constructed in this laboratory. S. lactis subsp. lactis MG1614 was transformed by using this ligation mixture and selecting for chloramphenicol resistance and growth in citrated milk medium. One clone containing a 10.0-MDa plasmid, subsequently designated as pVS6, was chosen for further studies. Despite the lack of homology with previously characterized proteinase genes of lactic streptococci, the cloned insert consistently conveyed the ability to grow in milk to proteinase-negative recipients in repeated transformation experiments. The genetic evidence suggests that the main part of the gene(s) for the proposed proteinase activity is located within a 3.8-MDa BglII fragment of the clone.  相似文献   

6.
Lactobacillus casei HN14, which was isolated from homemade cheese, produces an extracellular, cell wall-bound proteinase. The HN14 proteinase can be removed from the cell envelope by washing the cells in a Ca2+-free buffer. The activity of the crude proteinase extract is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the HN14 proteinase is similar to the lactococcal PI-type enzyme, since it hydrolyzes β-casein only. Lactobacillus casei HN14 appeared to be plasmid free, which suggests that the proteinase gene is chromosomally located. Chromosomal DNA of this strain hybridizes with DNA probes Q1 (which contains a fragment of the prtM gene) and Q6 and Q92 (which contain fragments of the prtP gene); all three probes originated from the proteinase gene region of Lactococcus lactis subsp. cremoris Wg2. A restriction enzyme map of the proteinase region of Lactobacillus casei HN14 was constructed on the basis of hybridization experiments. Comparison of the restriction enzyme maps of the Lactobacillus casei HN14 proteinase gene region and those of lactococcal proteinase gene regions studied so far indicates that they are highly similar.  相似文献   

7.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

8.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when 125I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

9.
The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin, TPCK and TLCK, and also by Hg2+, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.  相似文献   

10.
We have previously described studies of a 22 kDa active fragment of the LasA proteinase. In follow-up studies of LasA, we have discovered the separate existence of a 23 kDa proteinase which shares many of the enzymatic properties of LasA, including the ability to lyse heat-killed staphylococoi. However, this apparent serine proteinase, which we designate LasD, is distinct from the 22 kDa active LasA protein for the following reasons: (i) the N-terminal sequence of LasD shares no homology with LasA or the LasA precursor sequence; (ii) Pseudomonas aeruginosa LasA mutant strains AD1825 and FRD2128 do not produce LasA yet produce LasD; and (iii) specific antibodies to each proteinase do not show any cross-reactivity. LasD appears to be produced as a 30 kDa protein, which is possibly cleaved to produce a 23 kDa active fragment. The purified LasD fragment (23 kDa) shows strong staphylolytic activity only at higher pH conditions, while LasA exhibits staphylolytic activity over a broad pH range, in addition to their ability to cleave at internal diglycine sites, both the LasD and LasA endoproteinases efficiently cleave β-casein.  相似文献   

11.
Digestion of native rabbit liver fructose-1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) with a membrane-bound proteinase from rat liver lysosomes yields a fragment of Mr = 9850. This peptide contains the COOH terminus of the Fru-P2ase polypeptide chain and also the cyanogen bromide peptide (BrCN5) carrying the active site lysyl residue. The sequence of BrCN5 and its location with respect to the COOH terminus of the polypeptide chain have been determined. The active site lysyl residue is located at approximately residue ?54 from the COOH terminus. The bond hydrolyzed by the lysosomal proteinase is located between residues ?88 and ?89 from the COOH terminus.  相似文献   

12.
Salt-tolerant glutaminase (Micrococcus glutaminase, with an apparent molecular mass of 48.3 kDa, intact glutaminase) from the marine bacterium Micrococcus luteus K-3 was digested using protease derived from M. luteus K-3. The digestion products were a large fragment (apparent molecular mass of 38.5 kDa, the glutaminase fragment) and small fragments (apparent molecular mass of 8 kDa). The digestion was inhibited by phenylmethanesulfonyl fluoride (PMSF). Digestion of intact glutaminase by serine proteases including trypsin, elastase, lysyl endopeptidase, and arginylendopeptidase also produced the glutaminase fragment. The N-terminus of the glutaminase fragment was the same as that of intact glutaminase. The N-termini of two small fragments were Ala394 and Ala396, respectively. The enzymological and kinetic properties of the glutaminase fragment were almost the same as those of intact glutaminase except for salt-tolerant behavior. The glutaminase fragment was a higher salt-tolerant enzyme than the intact glutaminase, suggesting that Micrococcus glutaminase is digested in the C-terminal region by serine protease from M. luteus K-3 to confer salt tolerance on glutaminase.  相似文献   

13.
Lactoferrin is an iron binding glycoprotein with a molecular weight of 80 kDa. The molecule is divided into two lobes representing the N-terminal and C-terminal halves of the polypeptide chain, each containing an iron binding site. The serine proteinases such as trypsin, chymotrypsin, and pepsin hydrolyze lactoferrin into two unequal halves while proteinase K divides this protein into two equal halves. In the first step of hydrolysis by proteinase K, the C- and N-lobes, each having a molecular weight of approximately 40 kDa, are generated. In the next step, the lobes are further hydrolyzed into small molecular weight peptides. The proteinase K isolated from the hydrolyzed product does not show enzymatic activity suggesting that the enzyme is inhibited. Furthermore, the hydrolysis experiments on N-lobe and C-lobe showed that the inhibitory fragment came from the C-lobe. The purified lactoferrin fragment was found to be a decapeptide with an amino acid sequence of H2N-Val-Ala-Gln-Gly-Ala-Ala-Gly-Leu-Ala-COOH. The complex formed between proteinase K and lactoferrin fragment was crystallized by microdialysis. The crystals belonged to the monoclinic space group P21with cell dimensions a = 44.4 Å, b = 38.6 Å, c = 79.2 Å, β = 105.8o and Z = 2. The crystal structure has been determined at 2.4 Å resolution. It has been refined to an R factor of 0.163 for 9044 reflections. The Lf-fragment forms several intermolecular interactions with proteinase K. The Ser-224 Oγ and His-57 Nϵ2 move away to a distance of 3.68 Å in the complex. In the crystal structure, Gln-3I (I indicates inhibitor i.e., lactoferrin fragment) is involved in a direct intermolecular interaction with a symmetry related proteinase K molecule through a strong hydrogen bond with Asp-254. The mode of intermolecular interactions in the complex conformational features of the enzyme and placement of the fragment with respect to the enzyme resemble with the molecular complex of proteinase K with its natural inhibitor PKI3 from wheat. Proteins 33:30–38, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
To study the activation of human 72-kDa gelatinase, and its relation to tissue inhibitor of metalloproteinases 2 (TIMP-2), we purified human 72-kDa progelatinase both as a complex with TIMP-2 and as a free proteinase. Activation of progelatinase-TIMP-2 complexes with 4-aminophenylmercuric acetate yielded gelatinolytically active enzyme migrating at 62 kDa. TIMP-2 remained bound to the active enzyme. Removal of TIMP-2 from progelatinase by reverse-phase high performance liquid chromatography in the presence of trifluoroacetic acid, followed by complete dialysis in neutral pH buffer, resulted in multiple fragments. These fragments were formed as a result of the cleavage of 72-kDa progelatinase at several locations. Cleavage at the amino terminus was restricted to the removal of the propeptide, except in the case of degradation leading to inactive fragments. Two active species autocatalytically evolved upon removal of TIMP-2 from progelatinase. The 62 kDa-activated gelatinase lacked the amino-terminal propeptide, which is known to be removed upon treatment with 4-aminophenylmercuric acetate. In addition, an active 42.5-kDa fragment lacking both the propeptide and a portion of the carboxyl terminus was formed. This low-molecular-weight active form of 72-kDa progelatinase retained its ability to bind and degrade gelatin. Self-activation and degradation of 72-kDa progelatinase can be prevented by agents that inhibit metalloproteinases, including 1,10-phenanthroline. Evidence presented here suggests that TIMP-2 binds to a stabilization site that is independent of the active site. This stabilization site does not bind TIMP-1 (TIMP). Occupation of this site by TIMP-2 prevents autocatalytic activation and degradation but does not prevent gelatinolysis by the enzyme-inhibitor complex.  相似文献   

15.
《Insect Biochemistry》1991,21(4):363-373
A prophenoloxidase was purified from blood cells of the crayfish Pacifastacus leniusculus. The purified proenzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and had a molecular mass of 76 kDa under both non-reducing and reducing conditions. The crayfish prophenoloxidase was a glycoprotein, with an isoelectric point of about 5.4.A 36 kDa serine proteinase, isolated and purified from crayfish blood cells (Aspán et al., 1990b, Insect Biochem.20, 709–718), could convert the 76 kDa prophenoloxidase to phenoloxidase by an apparent proteolytic cleavage, since the molecular masses of two active enzymes, phenoloxidases, were 60 and 62 kDa. A commercial serine proteinase, trypsin, activated prophenoloxidase to phenoloxidase, and as a result a 60 kDa protein was produced.In the blood cells of crayfish four serine proteinases or 3H-DFP binding proteins are present, with masses of 36, 38, 50 and 67 kDa. However, 3H-DFP labelling of proteins in blood cells lysate, prepared in its inactive form, only yielded labelled bands of 50 and 67 kDa, whereas addition of an elicitor to prophenoloxidase system activation, a β-1,3-glucan, resulted in the appearance of four 3H-DFP labelled proteins, with molecular masses of 67, 50, 38 and 36 kDa, respectively. Thus, the 36 kDa endogenous serine proteinase, the prophenoloxidase activating enzyme, ppA, may be present as an inactive precursor in crayfish blood cells. The 38 and 36 kDa proteinases could both cleave the chromogenic peptide S-2337 [Bz-Ile-Glu-(γ-O-Piperidyl)-Gly-Arg-p-nitroaniline], and specifically bind prophenoloxidase.These results show that crayfish prophenoloxidase, the terminal enzyme of the prophenoloxidase activating cascade, a proposed defence pathway in arthropod blood, can be converted to active enzyme by an apparent proteolytic cleavage, not only by a commercial proteinase, but also by an endogenous serine type proteinase.  相似文献   

16.
《Insect Biochemistry》1990,20(5):485-492
Three proteinase inhibitors have so far been isolated and purified from crayfish haemolymph. One of these, isolated from crayfish plasma, namely a trypsin inhibitor with a molecular mass of 155 kDa was found to inhibit a serine proteinase, ppA, which is involved in the activation of prophenoloxidase, and is localized in the haemocytes. Another high molecular mass proteinase inhibitor, an α2-macroglobulin from crayfish plasma, which is a dimer of 190 kDa-subunits, was only inhibitory towards ppA to a lesser extent. A 23 kDa subtilisin inhibitor, purified from haemocytes, did not have any effect on the serine proteinase.We suggest that mainly the trypsin inhibitor, but to some extent also the α2-macroglobulin, are important in the regulation of the prophenoloxidase activating cascade, as they both inhibit ppA, which in its active form has been shown to mediate prophenoloxidase activation.  相似文献   

17.
A serine proteinase was isolated from fruits of Maclura pomifera (Raf.) Schneid. by affinity chromatography on bacitracin-containing sorbents and gel-filtration. The enzyme, named macluralisin, is a glycoprotein with a molecular mass of 65 kDa; its protein moiety corresponds to a molecular mass of 50 kDa. The substrate specificity of macluralisin towards synthetic peptides and insulin B-chain is similar to that of cucumisin, a subtilisin-like proteinase from melon fruit. The enzyme is completely inhibited by diisopropylfluorophosphate. Its amino-acid composition resembles that of a serine proteinase isolated from the Cucurbitaceae. The N-terminal sequence has 33% of its residues identical to those of the sequence of fungal subtilisin-like proteinase K. Hence, Maclura pomifera serine proteinase belongs to the subtilisin family, which seems to be broadly distributed in the plant kingdom.Abbreviations DFP diisopropylfluorophosphate - PMSF phenylmethylsulfonylfluoride - Glp pyroglutamyl - NHC6H4NO2 p-nitroanilide This work was supported in part by a grant from the Russian Foundation for Basic Research.  相似文献   

18.
Aquareovirus species vary with respect to pathogenicity, and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly, which can form viral inclusion bodies (VIBs) and recruit viral proteins to its VIBs in infected cells. NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa. Interestingly, a short specific fragment of NS80 has also been detected in infected cells. In this study, an approximately 58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using α-NS80C. Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose, suggesting that the fragment is not a transient intermediate of protein degradation. Moreover, another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or α-NS80N, indicating that the 58- kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80. Additionally, different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis, implying that the two cleavage fragments of NS80 function differently in the viral life cycle. These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus.
  相似文献   

19.

Background

Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site.

Methods

In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential.

Results

The final proteolytic step of PfSERA5 involves removal of a C-terminal ~ 6 kDa fragment that results in the generation of a catalytically active ~ 50 kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~ 6 kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5.

Conclusions

Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress.

General significance

These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~ 6 kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.  相似文献   

20.
The psaB gene product (PsaB protein), one of the reaction center subunits of Photosystem I (PS I), was specifically degraded by light illumination of spinach thylakoid membranes. The degradation of the protein yielded N-terminal fragments of molecular mass 51 kDa and 45 kDa. The formation of the 51 kDa fragment was i) partially suppressed by the addition of phenylmethylsulfonyl fluoride or 3,4-dichloroisocoumarin, which are inhibitors of serine proteases, and ii) enhanced in the presence of hydrogen peroxide during photoinhibitory treatment, but iii) not detected following hydrogen peroxide treatment in the dark. These results suggest that the hydroxyl radical produced at the reduced iron-sulfur centers in PS I triggers the conformational change of the PS I complex, which allows access of a serine-type protease to PsaB. This results in the formation of the 51 kDa N-terminal fragment, presumably by cleavage on the loop exposed to the stromal side, between putative helices 8 and 9. On the other hand, the formation of the 45 kDa fragment, which was enhanced in the presence of methyl viologen but did not accompany the photoinhibition of PS I, was not affected by the addition of hydrogen peroxide or protease inhibitors. Another fragment of 18 kDa was identified as a C-terminal counterpart of the 45 kDa fragment. N-terminal sequence analysis of the 18 kDa fragment revealed that the cleavage occurred between Ala500 and Val501 on the loop exposed to the lumenal side, between putative helices 7 and 8 of the PsaB protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号