首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jugular plasma progesterone concentrations were used to accurately predict open ewes (96 +/- 3%) in early pregnancy, but they less accurately predicted subsequent lambing especially during the late breeding season and most of the seasonal anestrus. Progesterone values clearly indicated that 500 I.U. of P.M.S.G. elevated ovulation rate in synchronized ewes, but did not clearly indicate fetal numbers. During late pregnancy (88-108 days), abdominal palpation, doplar ultrasound and serum progesterone analysis were equally efficacious in predicting lambing (86 +/- 9.8%, 90 +/- 9.0% and 87 +/- 4.1%, respectively), but a high percentage of ewes lambed that were diagnosed as nonpregnant (30 +/- 15.0%, 48 +/- 17.3% and 25 +/- 8.4%, respectively). Accuracy of the serum progesterone test improved the later the test was performed, although considerable individual overlap existed. Progesterone values for ewes bearing 1, 2, or greater than 2 fetuses at 94 to 95 days of gestation differed (5.5 +/- 0.3, 8.0 +/- 0.4 and 12.4 +/- 2.1, respectively (P < 0.05), whereas at 103 to 108 days values for ewes carrying two or more fetuses did not differ.  相似文献   

2.
One hundred twenty-one Swedish Landrace Finewool ewes were treated with progestagen sponges (P), teaser ram stimulation (R), or melatonin implants plus teaser ram stimulation (M) in preparation for breeding with whole rams in August. Blood progesterone analyses from ewes in the R and M groups gave no evidence of luteal activity before the introduction of teaser rams. There were no significant differences between treatments for pregnancy rate (~90%). The P group had the most compact lambing season, while median breeding dates for M and R groups were delayed by one cycle. In those groups, the introduction of breeding rams was later found to have been too late. M and R differed significantly for probable conception date but not for lambing dates. Circa 30% of M ewes did not have a short 6 day ovulation cycle after the first ovulation, which resulted in a less concentrated lambing season than the other methods. Although no significant differences in litter size were seen among the 3 treatments, M had the highest group average, 2.25. The ewes in this study were not in very deep anestrous in the middle of August. This supports the conclusion that treatment with exogenous hormones is not necessary to breed Swedish Landrace Finewool ewes successfully in late August/early September.  相似文献   

3.
Two experiments were designed to evaluate postlight treatment use of melatonin as a method of overcoming photorefractory response by measuring the lambing percentage of early-postpartum Polypay ewes bred either late in the breeding season or during anestrus. In Trial 1, pregnant ewes (n = 140) were assigned to one of three groups: 1) ambient photoperiod (control), 2) extended light (20 h) from October 21 to December 27, and 3) extended light as in Group 2, followed by supplemental feeding of 10 mg melatonin/head (hd) daily until April 6. Breeding started on February 3 and ended April 9. A greater percentage of ewes given extended light plus melatonin (54%) and extended light alone (45%) lambed than controls (24%) (P = 0.06). In Trial 2, pregnant ewes (n = 158) were assigned to groups as in Trial 1, except extended light was given to Groups 2 and 3 from January 1 to March 11, and Group 3 ewes were supplemented with 10 mg melatonin daily from March 12 to June 10. Breeding started April 18 and ended June 10. Lambing percentage was increased (P < 0.01) by extended light plus melatonin (54%) compared to controls (6%) or ewes given only extended light (10%). The shift from artificially extended light to the shorter ambient light with or without melatonin enhanced the lambing percentage of early postpartum ewes on an accelerated lambing program during breeding late in the season. However, only the more pronounced shift from long days to short days, accomplished with extended light plus melatonin, was effective in inducing out-of-season breeding in Polypay ewes.  相似文献   

4.
Two practical regimens designed to induce estrus and ovulation in ewes in late anestrus were compared. Forty ewes were given a soluble glass rumen bolus containing 150 mg melatonin on July 9 and were joined with two vasectomized rams on July 23 and with three fertile rams on August 6. A second group of 40 ewes was treated with an intravaginal progestagen pessary (60mg medroxy-progesterone acetate) on July 23. Following pessary removal after 12 d, ewes were given 750 IU of pregnant mare serum gonadotropin (PMSG). Five fertile rams were joined with these ewes 48 h after progestagen removal. Melatonin concentrations were determined in single blood samples collected in early afternoon of July 21. Mating dates, lambing dates and litter sizes were recorded. Date of mating was significantly later in ewes treated with melatonin compared with those treated with progestagen plus PMSG (P<0.0001). All ewes given melatonin were mated within 4 wk, and those on progestagen plus PMSG treatment within one day of fertile ram introduction. Thirty-four ewes (85%) allocated to melatonin treatment and 36 (90%) allocated to progestagen plus PMSG treatment lambed (P>0.05). Mean (+/-SEM) lambing date was later in melatonin-treated ewes (January 17+/-1.2 d) compared to those given progestagen plus PMSG (December 30+/-0.6 d; P<0.0001). Mean litter size was lower in melatonin-treated ewes (1.5+/-0.1) compared with those given progestagen plus PMSG (2.0+/-0.1; P<0.001). Plasma melatonin concentrations indicated that 9 of 40 ewes treated with melatonin had circulating melatonin concentrations of less than 16 pg/ml. It is concluded that under conditions that existed in this experiment, treatment with progestagen plus PMSG in late anestrus resulted in more synchronous mating and lambing and a higher litter size than that following administration of a soluble glass rumen-degradable bolus containing melatonin.  相似文献   

5.
The effects of melengestrol acetate (MGA) and P.G. 600 on ewe fertility outside the natural breeding season were evaluated. Rambouillet ewes were assigned to one of four groups: (1) control (C; n=92); (2) PG600 (n=86); (3) MGA (n=99); and (4) MGA+PG600 (n=92). A pellet with or without MGA (0.3mg/ewe/d) was fed at 0.15kg/ewe/d for 7d. On the last day of pellet feeding, ewes were given either saline or 5mL of P.G. 600 i.m. (400IU equine chorionic gonadotropin (eCG) and 200IU human chorionic gonadotropin (hCG)). Ultrasonography was performed between Days 20 and 25 of gestation for ewes that were mated during the first 6 d of the breeding period from the MGA (n=15) and MGA+PG600 (n=8) groups, and the number of luteal structures and embryos were counted. During the first 6d of the breeding period, MGA increased (P<0.05) the percentage of ewes that mated and conceived when compared to C and PG600 (24.2% vs. 3.3% and 10.5%, respectively). Relative to MGA, the mean (+/-S.E.M.) number of luteal structures per ewe was enhanced (P<0.03) in MGA+PG600 (1.53+/-0.13 vs. 2.38+/-0.42, respectively), however as pregnancy progressed, the number of embryos (1.5+/-0.13 vs. 1.8+/-0.16, respectively) and lambs born (1.3+/-0.15 vs. 1.5+/-0.27, respectively) did not differ. Treatment with MGA reduced (P<0.01) the interval from ram introduction to lambing relative to groups that did not receive MGA (168+/-0.8d vs. 171+/-0.6d, respectively). In conclusion, treatment with MGA increased the percentage of ewes conceiving early in the breeding period. Although P.G. 600 increased the number of luteal structures present per ewe, it did not significantly enhance ewe prolificacy.  相似文献   

6.
Accelerated lambing system is heavily reliant on reproductive technologies meant to enable off the season breeding in sheep. Therefore, the present study was programmed to assess the effect of breeding season (BS) on fertility of sheep following estrus synchronization (ES) and fixed time artificial insemination (FTAI). A total of 248 and 365 ewes were synchronized and inseminated during the BS (Febuary–March and July–September) and non-breeding season (NBS) respectively, during 2012–14. Synchronization of estrus was done by AVIKESIL-S, intra-vaginal progesterone sponges kept in situ in vagina for 12 days. 200 IU eCG was administered intramuscularly on 12th day after sponge withdrawal. FTAI was performed twice in ewes exhibiting signs of estrus at 48 and 56h after sponge removal, using liquid chilled semen of Patanwadi/Malpura rams containing 100 million sperm. Breeding season had no significant (p<0.05) effect on estrus synchronization. The estrous responses during the BS and NBS were 84.68% and 83.29% respectively. The lambing percentage during BS was 66.67%, which is significantly (p<0.05) higher than the lambing percentage of NBS (57.57%). Although, the lambing percentage in NBS maneuvered ewes were lower than the BS ewes but still the technology can be used to offset the effect of anestrus and to augment production in sheep.  相似文献   

7.
Rasa Aragonesa ewes were used to evalutate whether treatment with melatonin implants in spring could modify: (i) the response to the male effect in terms of oestrous behaviour and ovulation rate; and (ii) the maintenance of sexual activity and ovulation rate at medium term, i.e. over the next 306 days. On 12 April, 42 ewes were divided into two groups, with (M; n = 21) or without (C; n = 21) a subcutaneous implant containing 18 mg melatonin. On 17 May (day 0), three aproned rams were introduced to each group to induce a ram effect. Ewes were observed for oestrus daily. The rams were removed 40 days later after which one aproned ram was introduced daily. Oestrous detection continued until 28 February, 306 days after the first male-female contact. The ovulation rate was determined by endoscopy in the first three cycles after ram introduction and in September-October and January. Progesterone was assayed from blood samples taken on 6 May, 10 and from day 0 to day 22 after ram introduction. Luteal activity before ram introduction was seen in 33% (M) and 29 (C)% of the ewes, respectively. Significantly more M ewes showed oestrous behaviour during the first 40 days after ram introduction (M: 100%; C: 62%; P < 0.01). Similar differences were observed for ewes anovulatory at ram introduction (M: 100%, C: 47%; P < 0.01). These differences were maintained over the three oestrous cycles in both groups. Treatment with melatonin implants was without detrimental effect on cyclic functions in the following breeding season, after seasonal anoestrus. Melatonin treatment significantly increased (P < 0.05) the mean ovulation rate of the first (1.62 +/- 0.11 versus 1.31 +/- 0.13), second (1.78 +/- 0.15 versus 1.36 +/- 0.15) and third cycles (M: 1.73 +/- 0.12 versus C: 1.27 +/- 0.14). There was a significant interaction between the effects of cyclicity at day 0 and melatonin treatment on the ovulation rate in the first cycle (P < 0.05). The mean ovulation rates of both groups were similar at the beginning (September) and middle (January) of the subsequent breeding season. Overall, the results confirmed that melatonin implants, combined with the ram effect, improved the reproductive parameters of reduced-seasonality ewes during spring mating, without impairing sexual activity or ovulation rate during the subsequent breeding season.  相似文献   

8.
The breeding season was 157, 154, <126, 210 and 217 days for Rambouillet, Columbia, Suffolk, Rambouillet x Finnish Landrace and Columbia x Finnish Landrace ewes respectively. Treatment of cyclic ewes with pregnant mare serum gonadotropin (PMSG) (500 IU), following a 12-day treatment with progestin-containing intravaginal sponges, did not affect fertility, but did decrease the time from sponge removal to estrus, (control 48.0 +/- 3.1 hr; PMSG 39.4 +/- 1.8 hr) to the preovulatory surge of LH (control 52.7 +/- 2.8 hr; PMSG 39.0 +/- 1.7 hr) and FSH (control 52.3 +/- 2.9 hr; PMSG 42.8 +/- 1.6 hr) and caused an elevation of serum LH levels prior to the preovulatory surge (control 1.25 +/- 0.18 ng/ml; PMSG 2.31 +/- 0.22 ng/ml). Exposure of the purebred ewes to 18 hours of daylight in January, decreasing by 30 minutes a week subsequently, counteracted the seasonal reduction in the number of ewes lambing following induced breeding under natural daylight in May. Prolificacy was greatest in crossbred ewes and their fertility was not affected by season. Gestation period was longer for fall-bred ewes and varied with breed.  相似文献   

9.
During the nonbreeding season the pituitary and ovarian responses to a subcutaneous GnRH infusion were investigated in acyclic, lactating Mule ewes which exhibit a deep seasonal anestrus and in Finn x Dorset ewes in which seasonal anestrus is ill-defined. Each breed received 10 d of progestagen priming before being subdivided into 3 groups. In Group L + G, 5 lactating ewes received GnRH (250 ng/h sc) for 96 h; in Group D + G, 5 dry ewes received GnRH (250 ng/h sc) for 96 h; in Group L, 5 lactating ewes received saline vehicle for 96 h. The infusions began when lactating and dry ewes were approximately 28 d and 120 d post partum, respectively. Blood samples were collected for LH, progesterone and estradiol analysis. Estrous behavior was monitored between Day -4 and Day +7. On Day +7 the reproductive tract was also examined. In the Mule ewes the mean plasma LH concentration increased (P < 0.05) following minipump insertion in each treatment group, although mean LH levels were greater (P < 0.05) in Group D + G, than in either Group L + G or Group L. Following the GnRH infusion, mean plasma estradiol levels increased (P < 0.05) in Group D + G but not in Group L + G. A preovulatory LH surge and subsequent ovulation occurred in 5 5 , 2 5 and 0 5 ewes from Group D + G, L + G and L, respectively, and estrus was recorded in 5 5 , 1 5 and 0 5 of these ewes, respectively. The LH surges began earlier (P < 0.05) (43.2 +/- 6.8 h vs 77.0 +/- 1.0 h) and the ovulation rate was greater (2.2 +/- 0.37 vs 1.00 +/- 0.00) in Group D + G than Group L + G. In the Finn x Dorset ewes mean LH concentrations increased (P < 0.05), to a similar level following minipump insertion in Groups D + G and L + G, but not Group L. The elevated LH levels were accompanied by increased (P < 0.05) plasma estradiol levels in Group D + G, but not in Group L + G. The GnRH infusion culminated in an LH surge and estrous behavior in 5 5 , 1 5 and 0 5 ewes from Groups D + G, L + D and L, respectively. The interval to the LH surge was similar between Group D + G (48.4 +/- 6.6 h) and Group L + G (46.0 h). Ovulation was evident in those ewes which exhibited an LH surge plus one additional ewe from Group L + G. The mean ovulation rate was greater in Group D + G (4.00 +/- 1.05) than in Group L + G (1.5 +/- 0.50). These data show that continuous GnRH infusion can consistently induce out of season breeding in the nonlactating Mule and Finn x Dorset ewe but can not break combined seasonal and lactational anestrous in these breeds. Further, between-breed differences are evident in the site along the hypothalamic-pituitary-ovarian axis at which reproduction is compromised in ewes at the same chronological stage post partum.  相似文献   

10.
Twenty days before a regular fall breeding season, 93 mature Rambouillet ewes were randomly allotted to one of two groups to examine the response of cycling females exposed to sterile rams. Six vasectomized rams were joined with 46 ewes during the 20-day period while 47 ewes remained separate from the rams. All ewes were judged to have been cycling either by paint marks from rams on treated animals or by the cyclic nature of progesterone (sampled at four-day intervals) profiles in control ewes. After removal of sterile males, fertile Debouillet rams remained with the ewes during a 34-day breeding season. Approximately six weeks before beginning the lambing season, one-half the females in each sterile ram treatment group were forced to walk 0.8 km per day to examine the influence of exercise on subsequent reproductive performance. Presence of sterile males did not alter (P>0.10) lambing rate, average lambing date or percentage of ewes lambing during thirds of the lambing season suggesting that prebreeding exposure of cycling ewes to vasectomized rams does not enhance lambing rate or shorten the lambing season. Forced exercise resulted in increased daily feed consumption which was reflected in heavier (P<0.05) lamb birth weights. Percentage of ewes experiencing either dystocia or pregnancy toxemia was similar (P>0.20) in exercised and unexercised animals. Moderate exercise during late gestation may increase lamb birth weight without increasing lambing difficulty.  相似文献   

11.
Administration of FSH increases the number of developing follicles, and affects oocyte health and cleavage rate. To determine the optimal level of FSH treatment, studies were conducted during the normal breeding season and seasonal anestrus. In Experiment 1, ewes were implanted with SyncroMate-B (SMB; norgestomet) for 14 days during the breeding season. Beginning on day 12 or 13 after SMB implantation, ewes were treated with saline (control; n=10), or treated with FSH for two days (2D; n=9) or three days (3D; n=10). In Experiment 2, conducted during seasonal anestrus, ewes were implanted with SMB for 14 days (n=23) or were not implanted (n=26). The SMB-implanted and nonimplanted ewes were assigned to one of three treatments as in Experiment 1: control (n=13), 2D (n=21) or 3D (n=15). In Experiments 1 and 2, ewes were laparotomized to count the number of follicles < or = 3 mm and > 3 mm and to retrieve oocytes. Healthy oocytes from each treatment were used for IVF. In Experiment 3, ewes (n=6) were implanted twice with SMB for 14 days during seasonal anestrus. Ewes were injected with FSH for 2 days, and the oocytes were collected and fertilized as in Experiments 1 and 2. In Experiment 1, FSH-treatment increased (P < 0.05) the number of follicles > 3 mm, the number of oocytes retrieved from follicles < or = 3 mm and > 3 mm, the proportion of healthy oocytes, and the number of oocytes used for IVF. Oocytes from control and 2D ewes had greater (P < 0.01) cleavage rates than 3D ewes (68% and 71% vs. 42%). In Experiment 2, implanted and nonimplanted ewes had similar (P > 0.05) numbers of follicles, total oocytes, and healthy oocytes; therefore, data were combined. The FSH treatment increased (P < 0.01) the number of follicles > 3 mm, and the number of oocytes recovered from follicles > 3 mm. The recovery rate of oocytes and the percentage of healthy oocytes were similar for control and FSH-treated ewes. The cleavage rate in Experiment 2 ranged from 4 to 16%. In Experiment 3, the cleavage rate for ewes treated twice with SMB was 27% which tended to be greater (P < 0.07) than for the 2D ewes that received one SMB implant in Experiment 2. These data indicate that FSH increased the number of developing follicles and the number of healthy oocytes retrieved from ewes during the breeding season and seasonal anestrus. However, cleavage rates during seasonal anestrus were lower than during the normal breeding season in both FSH-treated and control ewes. Treatment of ewes for 2 days with FSH resulted in a greater cleavage rate than treatment of ewes for 3 days.  相似文献   

12.
The main objective of this study was to investigate the effectiveness of certain progestagen-gonadotrophin treatments on synchronization of estrus in sheep. In Experiment I, 30 Chios ewes were treated at the beginning of the breeding season with medroxyprogesterone acetate (MAP) intravaginal sponges for 12 days and a single i.m. treatment of either FSH (Group 1,10 IU, n = 8; Group 2, 5 IU, n = 8; Group 3, 2.5 IU, n = 8) or eCG (Group 4, 400 IU, n = 6) at the time of sponge removal. Ten days after sponge removal laparotomy was performed to record ovarian response. Clinical estrus was observed in more (though not at a significant level) FSH treated than eCG treated sheep (62.5% versus 33.3%). Administration of 400 IU eCG resulted in the highest mean number of CL perewe ovulating (2.8 +/- 0.2), with administration of 10 IU FSH producing the next best results (2.1 +/- 0.3). Statistically significant differences in the mean number of CL per ewe ovulating were found only between ewes in Group 3 (1.7 +/- 0.4) and Group 4 (2.8 +/- 0.2) (P < 0.05). In Experiment II, 53 Chios and 30 Berrichon ewes were treated during the mid-breeding season with MAP intravaginal sponges for 12 days and a single i.m. treatment of either 10 IU FSH (27 Chios and 16 Berrichon ewes) or 400 IU eCG (26 Chios and 14 Berrichon ewes), at the time of sponge removal. Ewes that were in estrus on Days 2-4 and 19-23 after sponge removal were mated to fertile rams. No significant differences were recorded between treatment or breed groups in the proportions of ewes observed in estrus after treatment. In the Berrichon breed, FSH administration resulted in higher lambing rates (93.8% versus 57.1%, P < 0.05) and higher mean number of lambs born per ewe exposed to rams (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05) than that of eCG. After treatment with eCG, the mean number of lambs born per ewe exposed to rams was higher in the Chios than the Berrichon breed (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05). After treatment with FSH, the lambing rate was higher in the Berrichon than the Chios breed (93.8% versus 63.0%, P < 0.05). In conclusion, a single FSH treatment (5 or 10 IU) at the end of progestagen treatment appears to be more effective than eCG for the induction of synchronized estrus in sheep at the beginning of the breeding season, with no cases of abnormal ovarian response observed. During the mid-breeding season FSH (10 IU) appears to be equally as effective as eCG (400 IU) in respect of lambing rate and mean number of lambs born per ewe.  相似文献   

13.
The objectives of this study were to determine if ewes subjected to frontal hypothalamic deafferentation (FHD) during anestrus remained anestrus or began to have estrous cycles, and if melatonin secretion was disrupted by FHD. Ovary-intact ewes in Group 1 were subjected to either FHD (n = 10) or sham FHD (n = 5) in early July 1983. Estrous cycles were monitored by measuring circulating progesterone concentrations from before FHD until September 1985. Group 2 ewes (n = 4) were subjected to FHD in October 1984. In late April 1985, blood samples were taken from all ewes at 1- to 4-h intervals from 1100 h to 0700 h of the following day to monitor diurnal changes of melatonin. Hypothalami were collected for histological evaluation of lesions. All Group 1 ewes (sham FHD and FHD) initiated normal estrous cycles in August and September 1983, and all ceased cycles by mid-February 1984. All sham FHD and 4 FHD ewes remained anestrus until August or September of 1984 and then resumed normal cycles. In contrast, 5 FHD ewes resumed cycles as early as April 1984 and then cycled intermittently or almost continuously. Two Group 2 ewes cycled continuously after FHD and 2 cycled infrequently. FHD ewes that showed prolonged breeding seasons had cuts that damaged the suprachiasmatic nucleus (SCN) and adjacent structures. Mean nocturnal (2000 h-0500 h) melatonin concentrations did not differ (p greater than 0.05) between sham FHD, FHD "normal season," and FHD "continuous cycle" ewes. In summary, damage to the SCN region by FHD during anestrus had no detectable effect on either onset or cessation of the next breeding season but greatly prolonged subsequent breeding seasons. Thus, the environmental signals that both initiated and terminated the 1983 breeding season apparently had been given before FHD was performed in midsummer. Damage to the SCN region during the breeding season caused some ewes to cycle continuously. The effects of FHD apparently were not due to disruption of melatonin secretion. FHD ewes that showed prolonged breeding seasons had normal seasonal changes of plasma prolactin concentrations. This suggests that different neural structures control seasonal patterns of gonadotropin and prolactin secretion.  相似文献   

14.
Using autumn-lambing ewes, this study investigated (i) the effects of diet on gonadotrophin secretion and responsiveness of the hypothalamic-pituitary-ovarian axis to exogenous GnRH during the early post-partum period; and (ii) whether ovulation prior to completion of uterine involution results in an increased incidence of aberrant ovarian cycles. Thirty-two ewes rearing 1.9+/-0.12 lambs were equally allocated to two dietary treatments at lambing (22 October +/-0.2 day). Diets comprised ad libitum hay and 1.5 kg per ewe per day of one of two concentrates (11.5 MJ ME, 195 g CP per kg) containing 300 g kg(-1) cracked maize grain (M) or 300 g kg(-1) sugar beet pellets (S). Half of the ewes on each diet (G) received 25 i.v. injections of 250 ng GnRH in 2 ml 0.9% saline at 2 h intervals from days 12-14 post-partum while remaining ewes (N) were monitored for the resumption of spontaneous ovarian cyclicity. Blood samples were obtained from all ewes throughout the study (lambing to 18 December) for measurement of circulating hormone concentrations and the uteri and ovaries of all ewes were examined via laparoscopy on day 21 post-partum. There were no effects of dietary treatment on ewe daily live weight loss, lamb daily live weight gain or the immediate post-partum increase in circulating FSH concentrations. Diet did not affect insulin concentrations or LH pulse frequency on day 12 post-partum but LH pulse amplitude was lower in ewes fed concentrate M compared to concentrate S (1.4+/-0.10 versus 1.7+/-0.12 ng ml(-1), respectively, P<0.05) and this was associated with an increased interval to the resumption of spontaneous ovarian cycles (35+/-3.1 versus 26+/-2.1 day, respectively, P<0.05). Administration of exogenous GnRH increased (P<0.05) the proportion of ewes on both diets that ovulated within 20 days of parturition and advanced the onset of ovarian cyclicity in ewes fed concentrate M by 9.5 days (significance of interaction, P<0.05). Four ewes, all of which ovulated before day 22 post-partum, had extended luteal activity while in remaining ewes, duration of the first luteal phase was inversely related to the time of first ovulation (r(2)=0.16, P<0.05). Results demonstrate that (i) the onset of ovarian cyclicity is influenced by diet and can be advanced by administration of exogenous GnRH; and (ii) ovulation during the early post-partum period is associated with an increased incidence of extended luteal activity.  相似文献   

15.
The establishment of ovarian activity during lactation was studied in the postpartum period of Rambouillet, Dorset and Finnish Landrace ewes following lambing during the month of October (1981). The mean postpartum intervals to first ovulation and first estrus were 22.7 and 53.0 for Rambouillets, 25.2 and 51.0 for Dorsets, and 22.5 and 49.7 days for Finnish Landrace ewes. Estrus was not associated with the first ovulation postpartum in any breed. The number of silent ovulations prior to the first estrus was highest in the Rambouillet and lowest in Finnish Landrace breeds. Of the 18 ewes in the project, 14 had normal luteal phase lengths, 1 had a possible short luteal phase and 3 had prolonged luteal phases following the first ovulation postpartum. The first service conception rate of all ewes bred was 82% (14 17 ) at an average of 52 days postpartum. The lambing rate following the autumn breeding was higher (2.14 +/- 0.14) than the lambing rate which followed the previous spring breeding (1.28 +/- 0.11).  相似文献   

16.
Forty-nine Spanish Salz ewes lambing in the second fortnight of March (20 March +/- 1.5 d) were used to determine the effects of exogenous melatonin and postweaning nutrition on endocrine status, date of first estrus and ovulation rate. Experimental design was a factorial defined by 2 postweaning planes of nutrition, 1.80 (high) and 1.35 (low) times the maintenance requirements, and treatment with a single 18-mg subcutaneous implant of melatonin (M) 32 d after lambing or no treatment control (C). Mean weaning to first estrus interval was shorter in treated than in control ewes (50.8 +/- 4.2 vs 87.6 +/- 6.3 d; P < 0.01). Considering both the treated and control animals together, the ratio between mean night and daytime plasma melatonin levels was significantly correlated with the implant insertion-first estrus interval on Day 5 (0.67; P < 0.01) and Day 35 (0.63; P < 0.05) after implantation. Melatonin implants induced a significant increase of mean LH concentrations at Days 14 and 33 after implantation (P < 0.01) without any significant influence of plane of nutrition. Ovulation rate was higher for treated than control ewes in the second estrus (P < 0.05). An interaction between plane of nutrition and exogenous melatonin on ovulation rate at the second cycle after weaning was detected (P < 0.01), being close to the significance in the first, fourth and fifth cycles (P < 0.1). These results suggest that exogenous melatonin in April may be an effective way of advancing the breeding season and enhancing ovulation rate associated with a low rather than a high plane of nutrition.  相似文献   

17.
Fukui Y  Roberts EM 《Theriogenology》1981,16(1):105-117
Two experiments were conducted to compare estrous response to three doses (8, 16 and 24 mg) of prostaglandin F(2alpha) (PGF(2alpha)) administered by intramuscular injection to ewes between day 6 and 12 of the estrous cycle (Experiment I) and to ewes on unknown days of the estrous cycle during four different stages of the breeding season (Experiment II). In experiment I, a total of 41 ewes were treated with PGF(2alpha). The injection of 24 mg PGF(2alpha) resulted in a higher proportion of ewes exhibiting estrus (13 14 , 92.9%) within 5 days after treatment as compared to the other two doses (2 12 and 10 15 , for 8 and 16 mg PGF(2alpha), respectively). However, there was no significant difference for the proportion between 16 mg and 24 mg PGF(2alpha). In experiment II, PGF(2alpha) was given to ewes on the 3rd of February (early breeding season), the 28th of February (mid-early breeding season), the 10th of April (mid breeding season) and the 27th of May (late breeding season). These was a significant difference for the proportion of ewes exhibiting estrus between the early breeding season and the other three seasons (P < 0.05) but not for ewes ovulating. Throughout the breeding season, 16 mg PGF(2alpha) appeared to be slightly better than the other two doses (8 and 24 mg) although there was no overall difference in the estrous responses to treatment among the three doses. However, a significant difference in the proportion of ewes ovulating was found among the three doses of PGF(2alpha) (P < 0.05). Especially, 16 mg PGF(2alpha) was significantly superior to 8 mg (P < 0.01) and 24 mg (P < 0.05). It was considered that there was a complicated relationship between the doses of PGF(2alpha) and the stages of the breeding season for induction of estrus and ovulation in the ewe.  相似文献   

18.
Two studies were conducted to evaluate the relationship between serving capacity scores and breeding performance of rams. The first study was conducted to determine whether rams with above or below mean serving capacity scores could perform equally in greater and lesser breeding intensity, single-sire mating schemes. The second study was conducted to determine whether rams with above and below mean serving capacity scores could perform equally well when only one or two ewes were in estrus daily in a multiple-sire breeding scheme (two rams/pen). Rams (n=68) were ranked according to average number of ejaculations recorded in serving capacity tests. Sixteen rams with the greatest scores (above-average) and 16 rams with least scores (below-average) were identified for breeding. Half of above-average and half of below-average rams were used in the two studies. For study 1, each ram was individually introduced to 23 estrus-synchronized ewes for 9 d to simulate high breeding intensity. Rams were given a 5-d rest before they were individually introduced to 23-24 naturally cyclic ewes for 17 d (low breeding intensity). For study 2, 16 rams were paired across ram types, and each pair competed for 20 ewes for 18 d (8 pens). For study 1, ewe fertility (ewes lambing/ewes present at lambing) and number of lambs born were greater (P<0.001) for above-average (0.67+/-0.03 and 27.6+/-1.2, respectively) than for below-average rams (0.39+/-0.07 and 15.3+/-2.7) with greater breeding intensity. Ewe fertility and lambs born did not differ for above-average (0.91+/-0.03 and 37.8+/-1.9, respectively) and below-average rams (0.86+/-0.03 and 39.0+/-1.9) with less breeding intensity. For study 2, number of ewes lambing (99+/-8.0 compared with 72+/-13.6; P=0.12) and number of lambs sired (149+/-18.5 compared with 101+/-22.8; P=0.14) did not differ between above- and below-average rams, respectively, in direct competition. Sexual classifications based on serving capacity tests are related to breeding performance of rams in certain breeding environments. When breeding intensity is greater, above-average rams impregnate more ewes and sire more lambs than below-average rams. When only a small number of ewes are in estrus daily, below-average rams for serving capacity scores perform as well as above-average rams in multiple-sire and single-sire breeding environments. We suggest that above-average rams should be used to reduce number of rams required when breeding intensity is greater.  相似文献   

19.
Transfer of superovulated sheep embryos obtained with different FSH-P   总被引:5,自引:0,他引:5  
Embryo transfer is one way of accelerating genetic improvement in sheep. One of the main obstacles has been the production of good-quality embryos. The use of progestagens and the stimulation of ovulation with follicle stimulating hormone pituitary extract (FSH-P) has permitted the superovulation of donor and recipient ewes and the synchronization of their cycles. The injection of 16 mg FSH-P at the end of progestin treatment gave means of 9 +/- 1.5, 12 +/- 1.5, and 19.5 +/- 2.6 corpora lutea per ewes in the Préalpes, Lacaune, and Romanov x Préalpes breeds respectively (this last breed is particularly prolific). Twenty Préalpes donor ewes produced 133 embryos that were recovered surgically at Day 6 of gestation; of these, 99 morulae were transferable. Forty-five morulae transferred surgically into 24 Préalpes recipient ewes yielded 16 pregnant ewes and 27 lambs (1.7 per ewe). Twenty-two Lacaune ewes yielded 204 embryos, of which 152 morulae were transferable. Of 76 recipients, 58 became pregnant and gave birth to 97 lambs (1.7 per ewe). During anoestrus, the mean ovulation rate decreased from 11.2 to 8.4; 40.6% of the embryos recovered were of transferable quality versus 74.5% during the normal breeding season. An improved superovulation technique, based on the use of FSH-P with a known follicle stimulating hormone to luteinizing hormonal (FSH/LH) ratio, provided us with good-quality embryos. This treatment must be adapted to the season.  相似文献   

20.
Ten ewes of each of two breeds, Dorset Horn (long breeding season) and Welsh Mountain (short breeding season), were given subcutaneous oestradiol-17 beta implants and then ovariectomized. Another 10 ewes of each breed were left intact. On 3 May 1982, all the ewes were housed in an artificial photoperiod of 16L:8D. After 4 weeks, half of the ewes of each breed and physiological state were abruptly exposed to a short-day (8L:16D) photoperiod while the others remained in long days (16L:8D). The time of onset of the breeding season was significantly (P less than 0.05) advanced in ewes switched to short days (12 August +/- 10 days) compared to those maintained in long days (4 September +/- 14 days). Dorset Horn ewes began to cycle (20 July +/- 7 days) significantly (P less than 0.001) earlier than Welsh Mountain ewes (19 September +/- 6 days). Disparities in the time of onset of cyclic activity in ewes of different breeds and daylength groups were echoed in disparities in the time at which plasma LH and FSH concentrations rose in oestrogen-implanted, ovariectomized ewes of the same light treatment group. Prolactin concentrations showed an immediate decrease in ewes switched to short days, but remained elevated in long-day ewes. Since the breeding season started in the presence of high prolactin concentrations in long-day ewes, it seems unlikely that prolactin is an important factor determining the timing of the onset of cyclic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号