首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

2.
The expression of cytochrome P-450 and cytochrome P-450 reductase (CPR) genes in the conterminous biotransformation of corticosteroids and PAHs was studied in Cunninghamella elegans 1785/21Gp. We had previously used this strain as a microbial eucaryotic model for studying the relationship between mammalian steroid hydroxylation and the metabolization of PAHs. We reported that cytochrome P-450 reductase is involved in the biotransformaton of cortexolone and phenanthrene. RT-PCR and Northern blotting analyses indicated that the cytochrome P-450 and CPR genes appear to be inducible by both steroids and PAHs. The expression of the cytochrome P-450 gene was increased ninefold and the expression of the CPR gene increased 6.4-fold in cultures with cortexolone and/or phenanthrene in comparison with controls. We conclude that the increase in cytochrome P-450 gene expression was accompanied by an increase in cytochrome P-450 enzymatic activity levels.  相似文献   

3.
Human phase I enzymes and their isoforms that metabolize pesticides are listed in a database that will be updated periodically. This initial version includes enzymes and isoforms that metabolize organophosphorus insecticides, chloroacetamide herbicides and triazine herbicides.  相似文献   

4.
Biotransformation of 1-nitrobenzo[e]pyrene (1-nitro-BeP), an environmental pollutant derived from the nitration of a non-carcinogen, benzo[e]pyrene, was studied using the fungus Cunninghamella elegans ATCC 36112. After 72 h incubation, 89% of 1-nitro-[3H]BeP added had been metabolized to two major metabolites. These metabolites were separated by reversed-phase high performance liquid chromatography and identified by 1H NMR, UV-visible, and mass spectral techniques as 1-nitro-6-benzo[e]pyrenylsulfate and 1-nitrobenzo[e]pyrene 6-O-β-glucopyranoside. Comparison of the fungal metabolism patterns of 1-nitro-BeP and BeP indicates that the nitro group at the C-1 position of BeP altered the regioselectivity of metabolism. Received 29 September 1998/ Accepted in revised form 15 December 1998  相似文献   

5.
Formulation of drugs for administration via the nasal cavity is becoming increasingly common. It is of potential clinical relevance to determine whether intranasal drug administration itself, or exposure to other xenobiotics, can modulate the levels and/or activity of nasal mucosal metabolic enzymes, thereby affecting the metabolism and disposition of the drug. In these studies, we examined changes in several of the major metabolic enzymes in nasal epithelial tissues upon exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), as well as the impact of these changes on the metabolism of a model intranasally administered drug, lidocaine. Results of these studies show that TCDD can induce multiple metabolic enzymes in the olfactory mucosa and that the pattern of induction in the olfactory mucosa does not necessarily parallel that which occurs in the liver. Further, increases in enzyme levels noted by Western blot analysis were associated with increased activities of several nasal mucosal enzymes as well as with enhanced conversion of lidocaine to its major metabolite, monoethyl glycine xylidide (MEGX). These results demonstrate that environmental exposures can influence the levels and activity of nasal mucosal enzymes and impact the pharmacology of drugs administered via the nasal route.  相似文献   

6.
This is the first revision of a database covering human phase I enzymes and their isoforms that metabolize pesticides and related compounds. The original version included enzymes that metabolize chloroacetamide and triazine herbicides, and organophosphorus insecticides. This revision also includes carbamate, nicotinoid, and pyrethroid insecticides and insect repellents.  相似文献   

7.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

8.
Cytochrome P4503A4 (CYP3A4), a major human drug-metabolizing enzyme, is responsible for the oxidation and clearance of the majority of administered drugs. One of the CYP3A4 substrates is bromoergocryptine (BEC), a dopamine receptor agonist prescribed for the inhibition of prolactin secretion and treatment of Parkinson disease, type 2 diabetes, and several other pathological conditions. Here we present a 2.15 Å crystal structure of the CYP3A4-BEC complex in which the drug, a type I heme ligand, is bound in a productive mode. The manner of BEC binding is consistent with the in vivo metabolite analysis and identifies the 8′ and 9′ carbons of the proline ring as the primary sites of oxidation. The crystal structure predicts the importance of Arg212 and Thr224 for binding of the tripeptide and lysergic moieties of BEC, respectively, which we confirmed experimentally. Our data support a three-step BEC binding model according to which the drug binds first at a peripheral site without perturbing the heme spectrum and then translocates into the active site cavity, where formation of a hydrogen bond between Thr224 and the N1 atom of the lysergic moiety is followed by a slower conformational readjustment of the tripeptide group modulated by Arg212.  相似文献   

9.
All-trans-retinoic acid (atRA), the major active metabolite of vitamin A, plays a role in many biological processes, including maintenance of epithelia, immunity, and fertility and regulation of apoptosis and cell differentiation. atRA is metabolized mainly by CYP26A1, but other P450 enzymes such as CYP2C8 and CYP3As also contribute to atRA 4-hydroxylation. Although the primary metabolite of atRA, 4-OH-RA, possesses a chiral center, the stereochemical course of atRA 4-hydroxylation has not been studied previously. (4S)- and (4R)-OH-RA enantiomers were synthesized and separated by chiral column HPLC. CYP26A1 was found to form predominantly (4S)-OH-RA. This stereoselectivity was rationalized via docking of atRA in the active site of a CYP26A1 homology model. The docked structure showed a well defined niche for atRA within the active site and a specific orientation of the β-ionone ring above the plane of the heme consistent with stereoselective abstraction of the hydrogen atom from the pro-(S)-position. In contrast to CYP26A1, CYP3A4 formed the 4-OH-RA enantiomers in a 1:1 ratio and CYP3A5 preferentially formed (4R)-OH-RA. Interestingly, CYP3A7 and CYP2C8 preferentially formed (4S)-OH-RA from atRA. Both (4S)- and (4R)-OH-RA were substrates of CYP26A1 but (4S)-OH-RA was cleared 3-fold faster than (4R)-OH-RA. In addition, 4-oxo-RA was formed from (4R)-OH-RA but not from (4S)-OH-RA by CYP26A1. Overall, these findings show that (4S)-OH-RA is preferred over (4R)-OH-RA by the enzymes regulating atRA homeostasis. The stereoselectivity observed in CYP26A1 function will aid in better understanding of the active site features of the enzyme and the disposition of biologically active retinoids.  相似文献   

10.
11.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

12.
Cunninghamella elegans degraded tributyltin (TBT) at 20 mg l–1 when grown in Sabouraud medium. Above this concentration, growth was inhibited. After 7 d 70% TBT (added at 10 mg l–1) was converted to less toxic derivatives: dibutyltin and monobutyltin. TBT metabolism was totally blocked by cytochrome P-450 inhibitors, metyrapone and proadifen. Only in medium with 1-aminobenzotriazole, was dibutyltin (0.42 mg l–1) found after 7 d of culturing. It is postulated that the significant resistance of C. elegans to TBT is associated with the capacity of the fungus to metabolise TBT.  相似文献   

13.
Nature of the ferryl heme in compounds I and II   总被引:1,自引:0,他引:1  
Heme enzymes are ubiquitous in biology and catalyze a vast array of biological redox processes. The formation of high valent ferryl intermediates of the heme iron (known as Compounds I and Compound II) is implicated for a number of catalytic heme enzymes, but these species are formed only transiently and thus have proved somewhat elusive. In consequence, there has been conflicting evidence as to the nature of these ferryl intermediates in a number of different heme enzymes, in particular the precise nature of the bond between the heme iron and the bound oxygen atom. In this work, we present high resolution crystal structures of both Compound I and Compound II intermediates in two different heme peroxidase enzymes, cytochrome c peroxidase and ascorbate peroxidase, allowing direct and accurate comparison of the bonding interactions in the different intermediates. A consistent picture emerges across all structures, showing lengthening of the ferryl oxygen bond (and presumed protonation) on reduction of Compound I to Compound II. These data clarify long standing inconsistencies on the nature of the ferryl heme species in these intermediates.  相似文献   

14.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

15.
16.
7-Ketocholesterol is a bioactive sterol, a potent competitive inhibitor of cytochrome P450 7A1, and toxic in liver cells. Multiple origins of this compound have been identified, with cholesterol being the presumed precursor. Although routes for formation of the 7-keto compound from cholesterol have been established, we found that 7-dehydrocholesterol (the immediate precursor of cholesterol) is oxidized by P450 7A1 to 7-ketocholesterol (k(cat)/K(m) = 3 × 10(4) m(-1) s(-1)). P450 7A1 converted lathosterol (Δ(5)-dihydro-7-dehydrocholesterol) to a mixture of the 7-keto and 7α,8α-epoxide products (~1:2 ratio), with the epoxide not rearranging to the ketone. The oxidation of 7-dehydrocholesterol occured with predominant formation of 7-ketocholesterol and with the 7α,8α-epoxide as only a minor product; the synthesized epoxide was stable in the presence of P450 7A1. The mechanism of 7-dehydrocholesterol oxidation to 7-ketocholesterol is proposed to involve a Fe(III)-O-C-C(+) intermediate and a 7,8-hydride shift or an alternative closing to yield the epoxide (Liebler, D. C., and Guengerich, F. P. (1983) Biochemistry 22, 5482-5489). Accordingly, reaction of P450 7A1 with 7-[(2)H(1)]dehydrocholesterol yielded complete migration of deuterium in the product 7-ketocholesterol. The finding that 7-dehydrocholesterol is a precursor of 7-ketocholesterol has relevance to an inborn error of metabolism known as Smith-Lemli-Opitz syndrome (SLOS) caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase, the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol in tissues and fluids of SLOS patients. Our findings suggest that 7-ketocholesterol levels may also be elevated in SLOS tissue and fluids as a result of P450 7A1 oxidation of 7-dehydrocholesterol.  相似文献   

17.
Nonane, a component of jet-propulsion fuel 8 (JP-8), is metabolized to 2-nonanol and 2-nonanone by pooled human liver microsomes (pHLM). Cytochrome P450 (CYP) isoforms 1A2, 2B6 and 2E1 metabolize nonane to 2-nonanol, whereas alcohol dehydrogenase, CYPs 2B6 and 2E1 metabolize 2-nonanol to 2-nonanone. Nonane and 2-nonanol showed no significant effect on the metabolism of testosterone, estradiol or N,N-diethyl-m-toluamide (DEET), but did inhibit carbaryl metabolism. JP-8 showed modest inhibition of testosterone, estradiol and carbaryl metabolism, but had a more significant effect on the metabolism of DEET. JP-8 was shown to inhibit CYPs 1A2 and 2B6 mediated metabolism of DEET, suggesting that at least some of the components of JP-8 might be metabolized by CYPs 1A2and/or 2B6.  相似文献   

18.
Metabolism of polychlorinated dibenzo-p-dioxins by CYP1A subfamily was examined by using the recombinant yeast microsomes. In substrate specificity and reaction specificity, considerable species differences between rats and humans were observed in both CYP1A1- and CYP1A2-dependent metabolism of dioxins. Among four CYPs, rat CYP1A1 showed the highest activity toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. To reveal the mechanism of dioxin metabolism, we examined rat CYP1A1-dependent metabolism of 2-chloro-dibenzo-p-dioxin. In addition to hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, hydroxylation with elimination of a chloride substituent, and cleavage of an ether linkage of the dioxin ring were observed. In particular, the cleavage of an ether linkage of the dioxin ring appeared most important for the detoxication of dioxins. Based on these results, the metabolic pathways of 2-chloro-dibenzo-p-dioxin by rat CYP1A1 were proposed. The metabolic pathways contain most of the metabolites observed in vivo using experimental animals, suggesting that P450 monooxygenase systems including CYP1A1 are greatly responsible for dioxin metabolism in vivo.  相似文献   

19.
20.
Tamoxifen is the most used anticancer drug and is approved for chemoprevention. Little is known about the enzyme inducing properties of low-dose regimens and the influence of route of administration. In this study, nude rats received 5 mg/kg/day of tamoxifen orally or a 50 mg continuous-release pellet subcutaneously. The mRNAs for cytochrome P450-enzymes (CYPs), flavin-containing monooxygenase 1 (FMO1) and phase II drug-metabolising enzymes were quantified by real-time RT-PCR. Tamoxifen and metabolite concentrations were measured using HPLC. We observed a significant increase in CYP3A18 and FMO1 mRNA expression levels in the orally treated animals, whereas the increase in CYP3A2 expression did not reach statistical significance (p = 0.057). No significant induction of enzyme expression was observed in rats that received subcutaneous (S.c.) treatment. After 33 days the serum levels of 4-hydroxytamoxifen (4OHtam), tamoxifen and N-desmethyltamoxifen (NDtam) in orally treated animals were 1.8 ± 0.7, 11.1 ± 3.2 and 11.4 ± 3.8 ng/ml, respectively. In subcutaneously treated animals, tamoxifen and N-desmethyltamoxifen were detected in tissues, but not in serum. These data demonstrate that in contrast to the subcutaneous administration, low-dose oral tamoxifen induced tamoxifen-metabolising enzymes. Furthermore, the different routes of administration resulted in different serum and tissue levels of tamoxifen and metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号