首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although dimerization appears to be a common property of G-protein-coupled receptors (GPCRs), it remains unclear whether a GPCR dimer binds one or two molecules of ligand and whether ligand binding results in activation of one or two G-proteins when measured using functional assays in intact living cells. Previously, we demonstrated that serotonin 5-hydroxytryptamine2C (5-HT2C) receptors form homodimers (Herrick-Davis, K., Grinde, E., and Mazurkiewicz, J. (2004) Biochemistry 43, 13963-13971). In the present study, an inactive 5-HT(2C) receptor was created and coexpressed with wild-type 5-HT2C receptors to determine whether dimerization regulates receptor function and to determine the ligand/dimer/G-protein stoichiometry in living cells. Mutagenesis of Ser138 to Arg (S138R) produced a 5-HT2C receptor incapable of binding ligand or stimulating inositol phosphate (IP) signaling. Confocal fluorescence imaging revealed plasma membrane expression of yellow fluorescent protein-tagged S138R receptors. Expression of wild-type 5-HT2C receptors in an S138R-expressing stable cell line had no effect on ligand binding to wild-type 5-HT2C receptors, but inhibited basal and 5-HT-stimulated IP signaling as well as constitutive and 5-HT-stimulated endocytosis of wild-type 5-HT2C receptors. M1 muscarinic receptor activation of IP production was normal in the S138R-expressing cells. Heterodimerization of S138R with wild-type 5-HT2C receptors was visualized in living cells using confocal fluorescence resonance energy transfer (FRET). FRET was dependent on the donor/acceptor ratio and independent of the receptor expression level. Therefore, inactive 5-HT2C receptors inhibit wild-type 5-HT2C receptor function by forming nonfunctional heterodimers expressed on the plasma membrane. These results are consistent with a model in which one GPCR dimer binds two molecules of ligand and one G-protein and indicate that dimerization is essential for 5-HT receptor function.  相似文献   

2.
While many studies have provided evidence of homodimerization and heterodimerization of G-protein-coupled receptors (GPCRs), few studies have used fluorescence resonance energy transfer (FRET) combined with confocal microscopy to visualize receptor dimerization on the plasma membrane, and there have been no reports demonstrating the expression of serotonin receptor dimers/oligomers on the plasma membrane of living cells. In the study presented here, biochemical and biophysical techniques were used to determine if 5-HT(2C) receptors exist as homodimers on the plasma membrane of living cells. Immunoprecipitation followed by Western blotting revealed the presence of immunoreactive bands the predicted size of 5-HT(2C) receptor monomers and homodimers that were detergent and cross-linker sensitive. Bioluminescence resonance energy transfer (BRET) was assessed in HEK293 cells expressing 5-HT(2C) receptors labeled with Renilla luciferase and yellow fluorescent protein. BRET levels were not altered by pretreatment with serotonin. Confocal microscopy provided direct visualization of FRET on the plasma membrane of live cells expressing 5-HT(2C) receptors labeled with cyan (donor) and yellow (acceptor) fluorescent proteins. FRET, assessed by acceptor photobleaching, was dependent on the donor/acceptor ratio and independent of acceptor expression levels, indicating that FRET resulted from receptor clustering and not from overexpression of randomly distributed receptors, providing evidence for GPCR dimers/oligomers in a clustered distribution on the plasma membrane. The results of this study suggest that 5-HT(2C) receptors exist as constitutive homodimers on the plasma membrane of living cells. In addition, a confocal-based FRET method for monitoring receptor dimerization directly on the plasma membrane of living cells is described.  相似文献   

3.
In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction.  相似文献   

4.
In the present study we analyzed the oligomerization state of the serotonin 5-HT1A receptor and studied oligomerization dynamics in living cells. We also investigated the role of receptor palmitoylation in this process. Biochemical analysis performed in neuroblastoma N1E-115 cells demonstrated that both palmitoylated and non-palmitoylated 5-HT1A receptors form homo-oligomers and that the prevalent receptor species at the plasma membrane are dimers. A combination of an acceptor-photobleaching FRET approach with fluorescence lifetime measurements verified the interaction of CFP- and YFP-labeled wild-type as well as acylation-deficient 5-HT1A receptors at the plasma membrane of living cells. Using a novel FRET technique based on the spectral analysis we also confirmed the specific nature of receptor oligomerization. The analysis of oligomerization dynamics revealed that apparent FRET efficiency measured for wild-type oligomers significantly decreased in response to agonist stimulation, and our combined results suggest that this decrease was mediated by accumulation of FRET-negative complexes rather than by dissociation of oligomers to monomers. In contrast, the agonist-mediated decrease of FRET signal was completely abolished in oligomers composed by non-palmitoylated receptor mutants, demonstrating the importance of palmitoylation in modulation of the structure of oligomers.  相似文献   

5.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

6.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

7.
Stargazin is an accessory protein of AMPA receptors that enhances surface expression and also affects the biophysical properties of the receptor. AMPA receptor domains necessary for either of these two processes have not yet been identified. Here, we used confocal imaging and electrophysiology of heterologously expressed, fluorophore-tagged GluR1, GluR2, and stargazin to study surface expression and desensitization kinetics. Stargazin-mediated trafficking was sensitive to the nature of the AMPA receptor cytoplasmic domain. The insertion of YFP after residue 15 of the truncated cytoplasmic tail of GluR1i perturbed stargazin-mediated trafficking of the receptor but not its modulation of desensitization kinetics. This construct also failed to permit fluorescence resonance energy transfer (FRET) with stargazin in the endoplasmic reticulum (ER), whereas FRET between fluorophore-tagged stargazin and non-truncated AMPA receptors demonstrated a specific interaction between these proteins, both in the ER and the plasma membrane. Rather than encoding a specific binding site, the fluorophore-tagged C terminus may restrict access to one or more ER retention sites. Although perturbations of the C terminus impeded stargazin-mediated trafficking to the plasma membrane, the effects of stargazin on the biophysical properties of AMPA receptors (i.e. modulation of desensitization) remained intact. These data provide strong evidence that the AMPA receptor domains required for stargazin modulation of gating and trafficking are separable.  相似文献   

8.
The human breast cancer resistance protein (BCRP/ABCG2) is a half ATP-binding cassette (ABC) efflux transporter that plays an important role in drug resistance and disposition. Although BCRP is believed to function as a homodimer or homooligomer, this has not been demonstrated in vivo in intact cells. Therefore, in the present study, we investigated dimer/oligmer formation of BCRP in intact cells. Wild-type BCRP and the mutant C603A were attached to cyan or yellow fluorescence protein and expressed in HEK293 cells by transient transfection. Protein levels, cell surface expression, and efflux activities of wild-type and mutant BCRP were determined by immunoblotting, 5D3 antibody binding, and flow cytometric efflux assay, respectively. Dimer/oligomer formation of BCRP in intact cells was analyzed using fluorescence resonance energy transfer (FRET) microscopy. Wild-type BCRP and C603A were expressed in HEK293 cells at comparable levels. C603A was predominantly expressed in the plasma membrane as was wild-type protein. Furthermore, C603A retained the same mitoxantrone efflux activity and the ability of dimer/oligmer formation as wild-type BCRP. Finally, cross-linking experiments yielded data consistent with the FRET analysis. In conclusion, we have, for the first time, demonstrated that BCRP can form a dimer/oligomer in vivo in intact cells using the FRET technique. We have also shown that Cys603 alone does not seem to be essential for dimer/oligomer formation of BCRP.  相似文献   

9.
The existence of dimers and higher oligomers of G-protein-coupled receptors (GPCRs) has been frequently reported using strategies based on coimmunoprecipitation or Western blot assays. These methods rely on highly artificial systems with overexpressed receptors, resulting in conflicting observations on the question of whether GPCR dimers are preformed or are formed in response to agonist treatment. Fluorescence resonance energy transfer (FRET) microscopy is a superior and less perturbing technique which can be performed on selected cell regions, e.g., plasma membrane of intact cells with a sensitivity high enough to allow study under physiological levels of receptor expression. Here we describe the application of photobleaching (pb) FRET microscopy for investigating ligand-dependent oligomerization of somatostatin receptors. Procedures for the introduction of suitable donor-acceptor fluorophores in a given GPCR are described. The competitive nature of FRET and photobleaching is exploited to enable the indirect measurement of FRET via its effect on donor photobleaching lifetimes on a pixel-by-pixel basis. The method allows enhanced resolution between 10 and 100A and represents a sensitive and specific biophysical tool for characterizing the assembly and regulation of GPCR oligomers on the cell surface.  相似文献   

10.
G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment.  相似文献   

11.
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric.  相似文献   

12.
The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and β(2)-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT(4)Rs) (including a 5-HT(4)-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT(4), in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric G(s) protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT(4)R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms.  相似文献   

13.
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.  相似文献   

14.
The mammalian olfactory G-protein coupled receptor family is comprised of hundreds of proteins that mediate odorant binding and initiate signal transduction cascades leading to the sensation of smell. However, efforts to functionally express olfactory receptors and identify specific odorant ligand–olfactory receptor interactions have been severely impeded by poor olfactory receptor surface expression in heterologous systems. Therefore, experiments were performed to elucidate the cellular mechanism(s) responsible for inefficient olfactory receptor cell surface expression. We determined that the mouse odorant receptors mI7 and mOREG are not selected for export from the ER and therefore are not detectable at the Golgi apparatus or plasma membrane. Specifically, olfactory receptors interact with the ER chaperone calnexin, are excluded from ER export sites, do not accumulate in ER–Golgi transport intermediates at 15 °C, and contain endoglycosidase H-sensitive oligosaccharides, consistent with olfactory receptor exclusion from post-ER compartments. A labile pool of ER-retained olfactory receptors are post-translationally modified by polyubiquitination and targeted for degradation by the proteasome. In addition, olfactory receptors are sequestered into ER aggregates that are degraded by autophagy. Collectively, these data demonstrate that poor surface expression of olfactory receptors in heterologous cells is attributable to a combination of ER retention due to inefficient folding and poor coupling to ER export machinery, aggregation, and degradation via both proteasomal and autophagic pathways Plasmids .  相似文献   

15.
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.  相似文献   

16.
Fluorescent cell division cycle (CDC)48 proteins were studied in living plant protoplasts. CDC48A and somatic embryogenesis receptor like kinase 1 (SERK1) were found to co-localize in the endoplasmatic reticulum (ER) and at the plasma membrane (PM), but not in endosomal compartments. Fluorescent lifetime imaging microscopy (FLIM) was used to detect F?rster resonance energy transfer (FRET) between CrFP/YFP-tagged CDC48A and SERK1. FRET is indicative of direct protein-protein interaction. CDC48A was found to interact only with SERK1 in small areas at the PM, but not in endosomes. These findings confirm and extend our previous findings that CDC48A in plants directly interacts with SERK1.  相似文献   

17.
Recent studies demonstrate that members of the superfamily of G protein-coupled receptors (GPCRs) form oligomers both in vitro and in vivo. The mechanisms by which GPCRs oligomerize and the roles of accessory proteins in this process are not well understood. We used disulfide-trapping experiments to show that C5a receptors, expressed in mammalian cells, reside in membranes as oligomers (Klco, J. M., Lassere, T. B., and Baranski, T. J. (2003) J. Biol. Chem. 278, 35345-35353). To begin to address how C5a receptors form oligomers, we now use fluorescence resonance energy transfer experiments on human C5a receptors expressed in the lower eukaryote Saccharomyces cerevisiae. C5a receptors tagged with variants of the green fluorescent protein display energy transfer in intact yeast, demonstrating that mammalian accessory proteins are not required for C5a receptor oligomerization. In both intact yeast cells and membrane preparations, agonist does not affect FRET efficiency, and little energy transfer is observed between the C5a receptor and a co-expressed yeast pheromone receptor (encoded by STE2), indicating that C5a receptor oligomerization is both receptor-specific and constitutive. FRET studies performed on fractionated membranes demonstrate similar levels of energy transfer between tagged C5a receptors in endoplasmic reticulum compared with plasma membrane, and urea washing of membranes has little effect on the extent of energy transfer. The oligomerization of C5a receptors expressed in yeast displays characteristics similar to those observed for other GPCRs studied in mammalian cells. This model system should prove useful for further studies to define mechanisms of oligomerization of mammalian GPCRs.  相似文献   

18.
Olfactory receptors are difficult to express functionally in heterologous cells. We found that olfactory receptors traffic poorly to the plasma membrane even in cells with neuronal phenotypes, including cell lines derived from the olfactory epithelium. Other than mature olfactory receptor neurons, few cells appear able to traffic olfactory receptors to the plasma membrane. In human embryonic kidney 293 cells and Xenopus fibroblasts, olfactory receptor immunoreactivity overlapped with a marker for the endoplasmic reticulum (ER) but not with markers for the Golgi apparatus or endosomes. Except for the ER, olfactory receptors were therefore absent from organelles normally involved in the plasma membrane trafficking of receptors. Olfactory receptors truncated prior to transmembrane domain VI were expressed in the plasma membrane, however. Co-expression of the missing C-terminal fragment with these truncated receptors prevented their expression in the plasma membrane. Intramolecular interactions between N- and C-terminal domains joined by the third cytoplasmic loop appear to be responsible for retention of olfactory receptors in the ER of heterologous cells. Our results are consistent with misfolding of the receptors but could also be explained by altered trafficking of the receptors.  相似文献   

19.
G protein-coupled receptors (GPCRs) are a superfamily of cell-surface receptors that regulate a variety of cell functions by responding to a myriad of ligands. The magnitude of the response elicited by a ligand is dictated by the level of receptor available at the plasma membrane. GPCR expression levels at the cell surface are a balance of three highly regulated, dynamic intracellular trafficking processes, namely export, internalization and degradation. This review will cover recent advances in understanding the mechanism underlying GPCR export trafficking by focusing on specific motifs required for ER export and the role of the Ras-like Rab1 GTPase and glycosylation in regulating ER–Golgi-cell-surface transport. The manifestation of diseases due to the disruption of GPCR export is also discussed.  相似文献   

20.
Serotonin 5-HT4 receptor isoforms are G protein-coupled receptors (GPCRs) with distinct pharmacological properties and may represent a valuable target for the treatment of many human disorders. Here, we have explored the process of dimerization of human 5-HT4 receptor (h5-HT4R) by means of co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Constitutive h5-HT4(d)R dimer was observed in living cells and membrane preparation of CHO and HEK293 cells. 5-HT4R ligands did not influence the constitutive energy transfer of the h5-HT4(d)R splice variant in intact cells and isolated plasma membranes. In addition, we found that h5-HT4(d)R and h5-HT4(g)R which structurally differ in the length of their C-terminal tails were able to form constitutive heterodimers independently of their activation state. Finally, we found that coexpression of h5-HT4R and beta2-adrenergic receptor (beta2AR) led to their heterodimerization. Given the large number of h5-HT4R isoforms which are coexpressed in a same tissue, our results points out the complexity by which this 5-HTR sub-type mediates its biological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号