首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

2.
Abstract: The effects of nitric oxide (NO) and cyclic GMP on in vivo transmitter release in the rat striatum were investigated using microdialysis sampling in urethane-anaesthetised animals. The NO release-inducing substances S -nitrosoacetylpenicillamine (SNAP), S -nitrosoglutathione (SNOG), and sodium nitroprusside (SNP) increased extracellular concentrations of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), taurine (Tau), acetylcholine (ACh), and serotonin (5-HT). Dopamine (DA) concentrations were decreased by SNAP but were increased by SNOG and SNP. An NO scavenger, haemoglobin, blocked or reduced the effects of SNAP on transmitter release. However, the control carrier compounds for SNAP, SNOG, and SNP (penicillamine, glutathione, and potassium ferricyanide, respectively, which do not induce release of NO) also increased GABA, Tau, DA, and 5-HT concentrations. When NO gas was given directly by dissolving it in degassed Ringer's solution, DA concentrations decreased significantly, and those of Asp, Glu, GABA, Tau, ACh, and 5-HT increased. These effects of NO gas were all inhibited by coadministration of haemoglobin and for GABA, Tau, ACh, and DA showed some calcium dependency. The cyclic GMP agonists 8-bromo-cyclic GMP and dibutryl-cyclic GMP stimulated dose-dependent increases in Asp, Glu, GABA, Tau, ACh, DA, and 5-HT concentrations. Increased striatal transmitter release in response to NO may therefore be mediated by its stimulatory action on cyclic GMP formation. NO inhibition of DA release may be mediated indirectly through its stimulation of local cholinergic and GABAergic neurones.  相似文献   

3.
The release of endogenous aspartic, glutamic, and gamma-aminobutyric acids (Asp, Glu, GABA, respectively) was measured in the effluent from superfused hippocampal slices using a new and sensitive mass spectrometric method. The stimulation of the stratum radiatum of the rat dorsal hippocampus caused a Ca2+-dependent increase in the release of these amino acids. This release was accompanied by an increase in the incorporation of [13C2] from [13C]glucose into Asp, Glu, and GABA, suggesting an increase in their neosynthesis. The removal of Ca2+ from the superfusion fluid brought about a marked decrease in Asp and Glu release at rest, and prevented their stimulation-evoked release and the appearance of population spikes. The results support the hypothesis that Asp and Glu are excitatory neurotransmitters in intrinsic hippocampal circuits and are possibly released from the Schaffer collaterals and commissural fibres. The increase in GABA release and neosynthesis during stimulation of the stratum radiatum could be related to recurrent inhibition evoked by transsynaptic stimulation of the pyramidal cells.  相似文献   

4.
Abstract— To demonstrate release of ACh in the absence of inhibition of cholinesterase, slices of cerebral cortex were incubated with [3H]choline, after which they were placed in a tissue bath for superfusion. Hemicholinium (HC-3) increased the spontaneous efflux of [3H]choline. Electrical stimulation at 4/s increased the efflux of [3H]choline to the same extent whether the slices were stimulated early or late during superfusion. The effect of stimulation on efflux of [3H]choline was abolished by tetrodotoxin and by the absence of calcium. The extent of choline efflux resulting from stimulation, as calculated from the specific radioactivity of the incubation medium, was the same when the slices were incubated with 0.1 or 1.0mM choline, but was less with lower concentrations of choline. We conclude that the increased efflux of [3H]choline evoked by stimulation probably originates from stores of [3H]ACh synthetized during incubation.  相似文献   

5.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

6.
Abstract— The spontaneous efflux of [3H]GABA and its metabolites from the frog retina has been studied. The efflux of radioactivity was multiphasic in the presence or absence of amino-oxyacetic acid (AOAA), an inhibitor of GABA metabolism, and was not affected by light or dark adaptation.
Strong retention of radioactivity was evident in the presence of AOAA, about 90% of the label remaining in the tissue after 4 h superfusion. Under these conditions, increases in the rate of release of radioactivity were evoked by electrical stimulation, 40 m m -potassium. unlabelled GABA (5 m m ), ouabain (5 × 10−5 m ) and the absence of calcium. The amount of [3H]GABA released by electrical stimulation was not markedly calcium dependent, whereas the response to 40 m m -potassium was reduced by 96% in the absence of calcium.  相似文献   

7.
Release of γ-aminobutyric acid (GABA) can be elicited by electrical field stimulation even in the absence of external Ca2+. Indeed, the release of GABA under such conditions is even higher than in the presence of Ca2+. To investigate the underlying mechanism of this phenomenon, the release of endogenous GABA from rat striatal slices was measured by high performance liquid chromatography with electro- chemical detection. Electrical stimulation at 2 Hz for 3 min elevated GABA efflux by 4.5-fold. Withdrawing external Ca2+ and adding 1 mM EGTA produced a small, transient increase in the basal efflux of GABA and increased electrically-evoked overflow 3-fold. Tetrodotoxin (5 μM) did not affect basal efflux in either normal or Ca2+-free conditions, but abolished electrically-evoked release. In the presence of normal Ca2+, nipecotic acid (1 mM) enhanced both spontaneous efflux and evoked overflow. Nipecotic acid also increased spontaneous release when external Ca2+ was removed. However, in the absence of Ca2+, nipecotic acid failed to increase electrically evoked GABA overflow. These results suggest that there exists a Ca2+-independent process for GABA release via the same carrier system that is utilized for high affinity GABA uptake.  相似文献   

8.
Acetylcholine Releases Prostaglandins from Brain Slices Incubated In Vitro   总被引:5,自引:3,他引:2  
A variety of neurotransmitters elicit a phosphoinositide response in the CNS; however, their effects on prostaglandin (PG) formation in the brain are not well characterized. In the present study, we investigated the effect of acetylcholine (ACh) on the synthesis of PGs E and F in slices from various regions of guinea pig brain incubated in glucose-fortified Krebs-Henseleit bicarbonate saline. Slices were prewashed in the presence of 1% albumin to reduce basal PG levels followed by incubation for 30 min at 37 degrees C in the presence or absence of ACh. Under these conditions, 5 mM ACh significantly increased the efflux of PGE and PGF from brain regions enriched in muscarinic cholinergic receptors, i.e., cerebral cortex, temporal cortex, corpus striatum, and hippocampus. Depolarization by 45 mM KCl also significantly enhanced PG synthesis, and the relative magnitude of the effect was similar to that of ACh. The stimulation of PG synthesis by ACh was inhibited by 20 microM atropine, whereas the K+-induced stimulation was not. The effects of potassium and ACh were additive at maximally effective ACh concentrations, an observation that suggests that ACh and K+ increase PG efflux through independent mechanisms. Norepinephrine, histamine, and serotonin, three other neurotransmitters that evoke a phosphoinositide response in the brain, were ineffective in stimulating PG release from brain cortex slices.  相似文献   

9.
The presence of 5 or 20 microM choline in the eserinized medium superfusing striatal slices enhanced the spontaneous release of acetylcholine (ACh) at both concentrations and, at 20 microM, the release of transmitter evoked by electrical field stimulation. Neither the electrical stimulation nor the addition of choline altered choline acetyltransferase activity. These results show that ACh release is dependent on the availability of extracellular choline. The rate of choline efflux was 7 times higher than the rate of ACh release, was not affected by stimulation, and was increased by 40% when hemicholinium-3 (HC-3), an inhibition of choline uptake, was present. The muscarinic antagonist atropine (1 microM) increased the evoked release of ACh into both the choline-free medium and that containing 20 microM choline. An adenosine receptor antagonist, 1,3-diethyl-8-phenyl xanthine (10 microM), failed to affect ACh release or the enhancement of release produced by atropine. In medium containing HC-3, stimulation of the slices elicited ACh release for the first 20 min of the 30 min stimulation period (15 Hz); thereafter, although stimulation was continued, the rate of release decreased to that associated with spontaneous release. Tissue ACh contents were not modified by the addition of choline or atropine to the medium, but were depressed by HC-3. Neither atropine nor HC-3 altered tissue choline content. The total amount of ACh + choline released during an experiment was 5-15 times higher than the decrease in tissue levels of these two compounds during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In vivo microdialysis was used to investigate whether nitric oxide (NO) modulates striatal neurotransmitter release in the rat through inducing cyclic GMP formation via soluble guanylate cyclase or formation of peroxynitrite (ONOO(-)). When NO donors, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 1 mM) or (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (NOC-18; 1 mM), were retrodialysed for 15 min, acetylcholine (ACh), serotonin (5-HT), glutamate (Glu), gamma-aminobutyric acid (GABA), and taurine levels were significantly increased, whereas those of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Only effects on ACh, 5-HT, and GABA showed calcium dependency. Inhibition of soluble guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 100 and 200 microM) dose-dependently reduced NO donor-evoked increases in ACh, 5-HT, Glu, and GABA levels. Coperfusion of SNAP or NOC-18 with an ONOO(-) scavenger, L-cysteine (10 mM) resulted in enhanced concentrations of Glu and GABA. On the other hand, DA concentrations increased rather than decreased, and no reductions in DOPAC and 5-HIAA occurred. This increase in DA and the potentiation of Glu and GABA were calcium-dependent and prevented by ODQ. Similar to NO, infusions of ONOO(-) (10 or 100 microM) decreased DA, DOPAC, and 5-HIAA. Overall, these results demonstrate that NO increases ACh, 5-HT, Glu, and GABA levels primarily through a cyclic GMP-dependent mechanism. For DA, DOPAC, and 5-HIAA, effects are determined by levels of ONOO(-) stimulated by NO donors. When these are high, they effectively reduce extracellular concentrations through oxidation. When they are low, DA concentrations are increased in a cyclic GMP-dependent manner and may act to facilitate Glu and GABA release further. Thus, changes in brain levels of antioxidants, and the altered ability of NO to stimulate cyclic GMP formation during ageing, or neurodegenerative pathologies, may particularly impact on the functional consequences of NO on striatal dopaminergic and glutamatergic function.  相似文献   

11.
Summary The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways.It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum.  相似文献   

12.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

13.
The concurrent release of endogenous ACh and GABA from the retina (in the presence of physostigmine) was measured using either an eye-cup preparation in rabbits anaesthetized with urethane or isolated rabbit retinas. There was a spontaneous resting release of ACh and GABA from the dark adapted retina of ca 5 and 160 pmol min-1 respectively. Stimulation of the initially dark adapted retina in vivo with flickering light (0.1-20 Hz) increased the release of ACh by up to 5 times the spontaneous resting release but did not cause a detectable increase in GABA release. The maximum light-evoked release of ACh was about 24 pmol min-1/retina and occurred at a frequency of 10 Hz. However, the maximum release of ACh per flash occurred at 0.1 Hz at which frequency the average ACh release per flash from one amacrine cell was ca 2.35 x 10(-18) mol. Exposure of the retina to the potent inhibitors of GABA uptake, SKF89976A and SKF100330A markedly reduced the resting release of ACh and abolished the light-evoked release of ACh but did not enable a light-evoked release of GABA to be detected. Bicuculline blocked the inhibitory actions of both SKF89976A and SKF100330A on ACh release but the combination of bicuculline and uptake inhibitor did not result in a light-evoked release of GABA. In contrast, KCl (20 mM) applied locally to the retina in vivo resulted in the release of both ACh and GABA (61 and 2.6-fold respectively). KCl (20 mM) also evoked large increases in ACh and GABA release from isolated rabbit retinas in room light (13.5 and 3.4-fold respectively). The K-evoked release of ACh and GABA from the rabbit retina both in vivo and in vitro was calcium dependent. These experiments are the first in which endogenous ACh and GABA release from the retina have been simultaneously measured and suggest that the release mechanisms for these transmitters are fundamentally similar.  相似文献   

14.
—A superfusion system has been used to examine the effects of choline and the utilization of [3H]choline during resting and potassium-stimulated release of ACh from rat cerebrum slices. The rate of ACh release from unstimulated tissue, 0·25 nmol/g per min, increased 8-fold when the concentration of KCl in the superfusing medium was increased from 5 to 50 mm . This rate was not maintained, however, but gradually declined to one-half the peak rate after approx. 30 min. After an initial washout period, choline was released at a rate of 2·5-5 nmol/g per min, which was equal to 1-2 × 10?6m in the superfusate. The addition of 1 × 10?5m -choline to the superfusing medium was required to maintain the stimulated ACh release at near peak rates for 90 min. When hemicholinium-3 was added to the 50 mm -KCl medium, the release of ACh reached a peak as usual but then declined to prestimulation rates. After introducing a pulse of radioactive choline in the superfusing medium, the specific radioactivity of choline and ACh in the superfusate was determined before and during stimulation with 50 mm -KCl. The specific radioactivity of released ACh was always greater than that of released choline; it decreased rapidly at the onset of stimulation, and then more gradually as stimulation proceeded. The specific radioactivity of ACh released in the initial minutes of stimulation was higher than that of ACh in the tissue before stimulation. In the last 10-20 min of stimulation the specific radioactivity of the released ACh was lower than that of the tissue ACh at the end of stimulation. The relative contributions of old and newly synthesized ACh to the releasable transmitter pool are discussed.  相似文献   

15.
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.  相似文献   

16.
The release of 3H-labeled purines at rest and during electrical stimulation was investigated in slices of rat cortex prelabeled with [3H]adenine and perfused with Krebs solution. A linear relationship was found between radioactivity efflux and stimulation frequency from 2.5 to 20 Hz. At frequencies of less than 2.5 Hz, no increase in radioactivity efflux was detected. The amount of tritium released per pulse increased with stimulation frequency up to 10 Hz and declined at 20 Hz. The tritium efflux from the slices at rest and at a stimulation frequency of 10 Hz, analyzed by HPLC with ultraviolet absorbance detection at 254 nm, consisted mostly of adenosine, inosine, and hypoxanthine. The 3H-labeled purine release evoked by 10-Hz stimulation increased with current intensity from 15 to 100 mA/cm2. At 20 mA/cm2, addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a 98% decrease of 3H-labeled purine release. At higher current strength, the percentage of tetrodotoxin-sensitive-evoked tritium efflux was smaller. At 30 mA/cm2, 86% of the evoked release was tetrodotoxin sensitive. Under these stimulation conditions, tritium efflux showed a 69% decrease when the slices were superfused with calcium-free Krebs solution containing 0.5 mM EGTA. The muscarinic agonist oxotremorine (30 microM) significantly enhanced the 10-Hz-stimulated 3H-labeled purine release. The effect of oxotremorine was partially prevented by tetrodotoxin, was antagonized by atropine (1.5 microM), and was mimicked by addition of physostigmine (3.8 microM) to the superfusion fluid. Atropine alone did not affect the evoked release, and none of the drugs modified the basal tritium efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We used a radioenzymatic technique to measure effects of the prostaglandin synthesis inhibitor indomethacin and of exogenous prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) on acetylcholine (ACh) efflux from canine tracheal smooth muscle (TSM) during sustained electrical field stimulation (EFS; 2 Hz, 2 ms pulse duration, 50 V for 15 min). ACh efflux from indomethacin (INDO, 10(-6) M)-pretreated and control TSM increased with consecutive stimulations. However, efflux of ACh was greater in INDO-treated than control muscles. INDO increased the tension produced by TSM in response to EFS. Neither PGE2 (10(-8) M) nor PGI2 (10(-6) M) had any effect on ACh efflux from INDO-pretreated TSM during the first of three periods of EFS. However, PGI2 and PGE2 prevented the progressive increase in ACh efflux observed on subsequent stimulations. PGE2 but not PGI2 decreased contractions of TSM caused by EFS. Our results demonstrate that endogenous prostaglandins, probably PGE2, do inhibit EFS-evoked ACh release from canine TSM in vitro, but suggest that these prostaglandins modulate EFS-evoked contractions predominantly by postsynaptic mechanisms.  相似文献   

18.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We sought to establish whether the endogenous opiate-receptor agonist Met-enkephalin (m-ENK) selectively modulates the release of endogenous tyrosine (Tyr) from brain slices prepared from the corpus striatum (CS). Amino acids (AAs) released from slices of CS and, for comparison, cerebral cortex (Cx) were measured by HPLC. Incubation of slices with m-ENK (1-10 microM) increased the basal release of Tyr (up to 293% of control) from CS, but not Cx, whereas other nonneurotransmitter AAs, phenylalanine (Phe) and valine (Val), were unchanged. The release of the putative neurotransmitter AAs glutamate (Glu), taurine (Tau), and glycine (Gly) were similarly increased by 50-150% with m-ENK in slices of CS, but not Cx. The enhanced release of AAs by m-ENK was prevented by removal of extracellular Ca2+ or by preincubation with the opiate receptor antagonist naloxone. Neuronal depolarization by potassium (5-55 mM) in the presence of Ca2+ did not affect the release of Tyr, whereas release of neurotransmitter AAs such as gamma-aminobutyric acid (GABA) were markedly increased. The increase in basal Tyr release by m-ENK was not the result of a decreased uptake of Tyr. Relative to slices, the basal release of Tyr, Phe, and Val from a synaptosomal (P2) preparation of CS was small (8-51%) compared to that of GABA, Gly, Glu, and Tau (49-123%). Nonetheless, m-ENK (10 microM) markedly increased the release of Tyr (to 833%), but not Glu, Gly, and Tau from the P2 fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
By means of the push-pull cannula method, the outflow of endogenous amino acids was studied in the striatum of halothane-anesthetized rats. Addition of K+ ions (30 mM for 4 min) to the superfusion fluid increased the release of aspartate (+116%), glutamate (+217%), taurine (+109%), and gamma-aminobutyric acid (GABA) (+429%) whereas a prolonged decrease in the outflow of glutamine (-28%) and a delayed reduction in the efflux of tyrosine (-25%) were observed. In the absence of Ca2+, the K+-induced release of aspartate, glutamate, and GABA was blocked whereas the K+-induced release of taurine was still present. Under these conditions, the decrease in glutamine efflux was reduced and that of tyrosine was abolished. Local application of tetrodotoxin (5 microM) decreased only the outflow of glutamate (-25%). One week following lesion of the ipsilateral sensorimotor cortex the spontaneous outflow of glutamine and of tyrosine was enhanced. Despite the lack of change in their spontaneous outflow, the K+-evoked release of aspartate and glutamate was less pronounced in lesioned than in control animals, whereas the K+-evoked changes in GABA and glutamine efflux were not modified. Our data indicate that the push-pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids. In addition, they provide further evidence for a role for glutamate and aspartate as neurotransmitters of corticostriatal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号