首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. Our two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. We conclude that the intermittent and continuous exposure conditions used in our laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers. Bioelectromagnetics 18:166–171, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.  相似文献   

3.
Circadian rhythms were recently proposed as a measure of physiological state and prognosis in disorders of consciousness (DOC). So far, melatonin regulation was never assessed in vegetative state (VS). Aim of our research was to investigate the nocturnal melatonin levels and light-induced melatonin suppression in a cohort of VS patients. We assessed six consecutive patients (four men, age 33.3?±?9.3 years) with post-traumatic VS and nine age-matched healthy volunteers (five men, age 34.3?±?8.9 years) on two consecutive nights: one baseline and one light exposure night. During baseline, night subjects were in bed in a dim (<5?lux) room from 10?pm to 8?am. Blood samples were collected hourly 00:30–3:30?am (00:30?=?MLT1; 1:30?=?MLT2; 2:30?=?MLT3; and 3:30?=?MLT4). Identical setting was used for melatonin suppression test night, except for the exposure to monochromatic (470?nm) light from 1:30 to 3:30?am. Plasma melatonin levels were evaluated by radioimmunoassay. Magnitude of melatonin suppression was assessed by melatonin suppression score (caMSS) and suppression rate. We searched for group differences in melatonin levels, differences between repeated samples melatonin concentrations during baseline night and light exposure night, and light-induced suppression of melatonin secretion. During baseline night, controls showed an increase of melatonin (MLT4 vs MLT1, p?=?0.037), while no significant changes were observed in VS melatonin levels (p?=?0.172). Baseline night MLT4 was significantly lower in VS vs controls (p?=?0.036). During light-exposure night, controls displayed a significant suppression of melatonin (MLT3 and MLT4 vs MLT2, p?=?0.016 and 0.002, respectively), while VS patients displayed no significant changes. The magnitude of light-induced suppression of melatonin levels was statistically different between groups considering control adjusted caMSS (p?=?0.000), suppression rate (p?=?0.002) and absolute percentage difference (p?=?0.012). These results demonstrate for the first time that VS patients present an alteration in night melatonin secretion and reduced light-induced melatonin suppression. These findings confirm previous studies demonstrating a disruption of the circadian system in DOC and suggest a possible benefit from melatonin supplementation in VS.  相似文献   

4.
The aim of this study was to determine whether exposure to magnetic fields might affect human health and to look for possible effects of acute exposure (9 hours) to 50-Hz magnetic fields (10 microT) on the urinary concentration of biogenic amines. Thirty-two young men (20-30 years old) were divided into two groups (sham-exposed and exposed group) of 12 to 16 subjects each. All subjects participated in two 24-hour experiments to evaluate the effects of both continuous and intermittent exposure to magnetic fields. The subjects were exposed to the magnetic field from 2300 to 0800, while lying down. Total urine (from 2300 to 0800) was collected at 0800. The results (expressed as a ratio of biogenic amine excretion to creatinine excretion (nmol/mmol)) did not differ significantly between sham-exposed and exposed men for any of the parameters measured: adrenaline, noradrenaline, dopamine, dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid. These results suggest that nocturnal exposure to either continuous or intermittent 50-Hz magnetic fields of 10 microT does not affect, at least under our experimental conditions, the nocturnal excretion of biogenic amines in healthy young men.  相似文献   

5.
Quantal melatonin suppression by exposure to low intensity light in man   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were examined following three relatively low intensities of artificial light. Six normal, healthy control subjects were all exposed to (a) 200 lux, (b) 400 lux and (c) 600 lux for a three hour duration from midnight to 0300 h. Blood was also collected on a control night where light intensity was less than 10 lux throughout. Significant suppression of melatonin was observed following light of 400 lux and 600 lux intensity when compared to the control night (p less than 0.05; Mann-Whitney U-test). 200 lux light did not produce a statistically significant melatonin suppression when compared with control samples. Each light intensity produced its own individual maximal melatonin suppression by one hour of exposure. Increased duration of exposure to the light had no further influence on melatonin plasma concentrations. These data confirm a dose response relationship between light and melatonin suppression, and indicate that there is no reciprocal relationship between the effects of light intensity and the duration of exposure on maximal melatonin suppression in man.  相似文献   

6.
夜间光照对褪黑激素抑制的量化计算   总被引:1,自引:0,他引:1  
作为人体的重要激素之一,褪黑激素具备重要的生理功能.不适当的夜间光照会造成人体生物钟节律的异常,进而导致褪黑激素内分泌的抑制.夜间光照引起的褪黑激素抑制与光的波长和色温关系密切.此前尚仍缺乏一个夜间光照对褪黑激素抑制效果的量化计算方案.提出了一种夜间光照对褪黑激素抑制的量化算法,拟合了人体血液褪黑激素抑制率的相对光谱灵敏度归一化曲线,建立了夜间光照与褪黑激素抑制量化计算的算法模型.研究结果为室内安全光照环境的设计提供了理论依据和计算方法,并可在光污染的控制、夜间安全环境照明标准的制定等方面得到应用.  相似文献   

7.
The purpose of this study was to determine if 60 Hz magnetic fields can alter the clinical progression of leukemia in an animal model. Large granular lymphocytic (LGL) leukemia cells from spleens of leukemic rats were transplanted into young male Fischer 344 rats, producing signs of leukemia in approximately 2–3 months. The animals were randomly assigned to 4 treatment groups (108/group) as follows: 1) 10 G (1.0 mT) linearly polarized 60 Hz magnetic fields, 2) sham exposed [null energized unit with residual 20 mG (2 μT) fields], 3) ambient controls [<1 mG (0.1 μT)], and 4) positive controls (a single 5 Gy whole body exposure to 60Co 4 days prior to initiation of exposure). All rats were injected intraperitoneally (ip) with 2.2 × 107 LGL leukemic cells at the initiation of exposure or sham exposure. The magnetic fields were activated for 20 h/day, 7 days/week, allowing time for animal care. The experimental fields were in addition to natural ambient magnetic fields. Eighteen rats from each treatment group were bled, killed, and evaluated at 5, 6, 7, 8, 9, and 11 weeks of exposure. Peripheral blood hematological endpoints, changes in spleen growth, and LGL cell infiltration into the spleen and liver were measured to evaluate the leukemia progression. No significant or consistent differences were detected between the magnetic field exposed groups and the ambient control group, although the clinical progress of leukemia was enhanced in the positive control animals. These data indicate that exposure to sinusoidal, linearly polarized 60 Hz, 10 G magnetic fields did not significantly alter the clinical progression of LGL leukemia. Furthermore, the data are in general agreement with previous results of a companion repeated‐bleeding study in which animals were exposed for 18 weeks. Bioelectromagnetics 20:48–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Exposure to light is a major determinant of sleep timing and hormonal rhythms. The role of retinal cones in regulating circadian physiology remains unclear, however, as most studies have used light exposures that also activate the photopigment melanopsin. Here, we tested the hypothesis that exposure to alternating red light and darkness can enhance circadian resetting responses in humans by repeatedly activating cone photoreceptors. In a between-subjects study, healthy volunteers (n = 24, 21–28 yr) lived individually in a laboratory for 6 consecutive days. Circadian rhythms of melatonin, cortisol, body temperature, and heart rate were assessed before and after exposure to 6 h of continuous red light (631 nm, 13 log photons cm−2 s−1), intermittent red light (1 min on/off), or bright white light (2,500 lux) near the onset of nocturnal melatonin secretion (n = 8 in each group). Melatonin suppression and pupillary constriction were also assessed during light exposure. We found that circadian resetting responses were similar for exposure to continuous versus intermittent red light (P = 0.69), with an average phase delay shift of almost an hour. Surprisingly, 2 subjects who were exposed to red light exhibited circadian responses similar in magnitude to those who were exposed to bright white light. Red light also elicited prolonged pupillary constriction, but did not suppress melatonin levels. These findings suggest that, for red light stimuli outside the range of sensitivity for melanopsin, cone photoreceptors can mediate circadian phase resetting of physiologic rhythms in some individuals. Our results also show that sensitivity thresholds differ across non-visual light responses, suggesting that cones may contribute differentially to circadian resetting, melatonin suppression, and the pupillary light reflex during exposure to continuous light.  相似文献   

9.
This experiment tested effects of human eye pigmentation depending on the ethnicity on suppression of nocturnal melatonin secretion by light. Ten healthy Caucasian males with blue, green, or light brown irises (light-eyed Caucasians) and 11 Asian males with dark brown irises (dark-eyed Asians) volunteered to participate in the study. The mean ages of the light-eyed Caucasians and dark-eyed Asians were 26.4 +/- 3.2 and 25.3 +/- 5.7 years, respectively. The subjects were exposed to light (1,000 lux) for 2 h at night. The starting time of exposure was set to 2 h before the time of peak salivary melatonin concentration of each subject, which was determined in a preliminary experiment. Salivary melatonin concentration and pupil size were measured before exposure to light and during exposure to light. The percentage of suppression of melatonin secretion by light was calculated. The percentage of suppression of melatonin secretion 2 h after the start of light exposure was significantly larger in light-eyed Caucasians (88.9 +/- 4.2%) than in dark-eyed Asians (73.4 +/- 20.0%) (P < 0.01). No significant difference was found between pupil sizes in light-eyed Caucasians and dark-eyed Asians. These results suggest that sensitivity of melatonin to light suppression is influenced by eye pigmentation and/or ethnicity.  相似文献   

10.
Bright light at night improves the alertness of night workers. Melatonin suppression induced by light at night is, however, reported to be a possible risk factor for breast cancer. Short-wavelength light has a strong impact on melatonin suppression. A red-visor cap can cut the short-wavelength light from the upper visual field selectively with no adverse effects on visibility. The purpose of this study was to investigate the effects of a red-visor cap on light-induced melatonin suppression, performance, and sleepiness at night. Eleven healthy young male adults (mean age: 21.2±0.9 yr) volunteered to participate in this study. On the first day, the subjects spent time in dim light (<15 lx) from 20:00 to 03:00 to measure baseline data of nocturnal salivary melatonin concentration. On the second day, the subjects were exposed to light for four hours from 23:00 to 03:00 with a nonvisor cap (500 lx), red-visor cap (approx. 160 lx) and blue-visor cap (approx. 160 lx). Subjective sleepiness and performance of a psychomotor vigilance task (PVT) were also measured on the second day. Compared to salivary melatonin concentration under dim light, the decrease in melatonin concentration was significant in a nonvisor cap condition but was not significant in a red-visor cap condition. The percentages of melatonin suppression in the nonvisor cap and red-visor cap conditions at 4 hours after exposure to light were 52.6±22.4% and 7.7±3.3%, respectively. The red-visor cap had no adverse effect on performance of the PVT, brightness and visual comfort, though it tended to increase subjective sleepiness. These results suggest that a red-visor cap is effective in preventing melatonin suppression with no adverse effects on vigilance performance, brightness and visibility.  相似文献   

11.
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Sprague-Dawley male rats, maintained in a 14:10 h light:dark cycl were exposed for 30 days (starting at 56 days of age) to a 65 kV/m, 60 Hz electric field or to a sham field for 20 h/day beginning at dark onset. Pineal N-acetyltransferase (NAT), hydroxy-indole-o-methyl transferase (HIOMT), and melatonin as well as serum melatonin were assayed. Preliminary data on unexposed animals indicated that samples obtained 4 h into the dark period would reveal either a phase delay or depression in circadian melatonin synthesis and secretion. Exposure to electric fields for 30 days did not alter the expected nighttime increase in pineal NAT, HIOMT, or melatonin. Serum melatonin levels were also increased at night, but the electric field-exposed animals had lower levels than the sham-exposed animals. Concurrent exposure to red light and the electric field or exposure to the electric field at a different time of the day-night period did not reduce melatonin synthesis. These data do not support the hypothesis that chronic electric field exposure reduces pineal melatonin synthesis in young adult male rats. However, serum melatonin levels were reduced by electric field exposure, suggesting the possibility that degradation or tissue uptake of melatonin is stimulated by exposure to electric fields. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

14.
The present study investigated the hypothesis that a strong extremely low frequency magnetic field partially suppresses the synthesis of melatonin and subsequently elevates the core body temperature. Seven healthy young men (16-22 years) took part in a control and in an exposure session. Three men experienced first the control and then the exposure session, four men experienced the sessions in reverse order. Control sessions were performed as constant routines, where the participants spent 24 hour periods continuously in bed while air temperature was 18 degrees C, illumination less than 30 lux, and the sound pressure level 50 dBA. The exposure sessions differed from that protocol only between 6 pm and 2 am when a strong extremely low frequency magnetic field was continuously applied (16.7 Hz, 0.2 mT). Assuming that the participants were unable to perceive the field consciously, they were blind against the actual condition. Salivary melatonin levels were determined hourly; body core temperatures and heart rates were registered continuously throughout. Neither of these parameters revealed alterations that can be related to the influence of the magnetic field. The present results, taken together with other investigations using that particular field, lead to the hypothesis that the effects most likely, occur, only after repetitive exposures to intermittent fields.  相似文献   

15.
《Chronobiology international》2013,30(6):1171-1182
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00h, in 144 persons aged 30–110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P<0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P<0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30–39, 40–49, 50–59, and 60–69 yr: blood samples were taken at 2h intervals from 08:00 to 22:00h and hourly from 22:00 to 08:00h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.  相似文献   

16.
In recent years, there has been a great deal of publicity concerning the possible health effects of electric and/or magnetic field exposure. One of the most frequently reported observations after the exposure of animals to either electric or magnetic fields relates to alterations in the metabolism of serotonin (5HT) to melatonin within the pineal gland. This review summarizes these results particularly in animals exposed to intermittently inverted, non-time varying magnetic fields, i.e., pulsed static magnetic fields. When exposure occurs at night, the conversation of 5HT to melatonin is typically depressed, not unlike that after light exposure at night. The mechanisms by which pulsed magnetic fields alter the ability of the pineal to convert 5HT to the chief pineal hormone melatonin remains unknown but may involve effects on any or all of the following: the retinas, the suprachiasmatic nuclei, the peripheral sympathetic nervous system, and the pinealocytes. Results to date suggest that induced electrical currents (eddy currents) produced by the pulsed magnetic fields are particularly detrimental to pineal indoleamine metabolism and may be an important causative factor in the metabolic changes measured. The physiological consequences of perturbations in the melatonin rhythm induced by magnetic field exposure remain unknown.  相似文献   

17.
The purpose of this study was to determine the relationship between individual difference in melatonin suppression by exposure to light and habitual bedtime. Seventeen healthy male students (mean age: 22.6+/-2.4 yr) volunteered to participate in the study. The subjects were exposed to light (1000 lx) for 2 hours from 2 hours before the time of peak salivary melatonin concentration. Two hours after exposure to the light, melatonin suppression had occurred in fifteen subjects. No significant correlation was found between the rate of melatonin suppression and habitual bedtime in the fifteen subjects in whom melatonin suppression occurred. However, the habitual bedtime of the two subjects in whom melatonin suppression did not occur was earlier than that of the other subjects. These results suggest that there are some people with very low sensitivity to light and that this may affect habitual bedtime.  相似文献   

18.
Pineal melatonin levels were compared in laboratory-raised or wild-captured 13-lined ground squirrels (Spermophilus tridecemlineatus) that were either exposed to 10 h of darkness at night or to light which had an irradiance of 400 μW/cm2. In laboratory-born squirrels the period of darkness was associated with a gradual rise in pineal melatonin levels with peak values being reached at 0200 h, 6 h after darkness onset. Thereafter, melatonin levels decreased and were back to low daytime levels by 0800 h, 2 h after light onset. The exposure of laboratory-raised animals to an irradiance of 400 μW/cm2 during the night totally prevented the nocturnal rise in pineal melatonin levels in these animals. In wild-captured ground squirrels the period of darkness at night was associated with a rapid rise in pineal melatonin such that by 2200 h, 2 h after lights out, peak melatonin values were already attained; additionally, melatonin levels remained high throughout the period of darkness but returned to daytime values by 0800 h. Exposure of wild-captured squirrels to a light irradiance of 400 μW/cm2 during the normal dark period was completely incapable of suppressing pineal melatonin levels. The difference in the sensitivity of the pineal gland of laboratory-raised and wild-captured ground squirrels may relate to their previous lighting history.  相似文献   

19.
This study investigated whether sensitivity of the nocturnal melatonin suppression response to light depends on the area of the retina exposed. The reason to suspect uneven spatial sensitivity distribution stems from animal work that revealed that retinal ganglion cells projecting to the suprachiasmatic nuclei (SCN) are unequally distributed in several species of mammals. Four distinct areas of the retinas of 8 volunteers were selectively exposed to 500 lux between 1:30 a.m. and 3:30 a.m. Saliva samples were taken before, during, and after light exposure in 1-h intervals. A significant difference in sensitivity was found between exposure of the lateral and nasal parts of the retinas, showing that melatonin suppression is maximal on exposure of the nasal part of the retina. The results imply that artificial manipulation of the circadian pacemaker to alleviate jet lag, to improve alertness in shift workers, and possibly to treat patients suffering from seasonal affective disorder should encompass light exposure of the nasal retina.  相似文献   

20.
Heart rate variability (HRV) results from the action of neuronal and cardiovascular reflexes, including those involved in the control of temperature, blood pressure and respiration. Quantitative spectral analyses of alterations in HRV using the digital Fourier transform technique provide useful in vivo indicators of beat-to-beat variations in sympathetic and parasympathetic nerve activity. Recently, decreases in HRV have been shown to have clinical value in the prediction of cardiovascular morbidity and mortality. While previous studies have shown that exposure to power-frequency electric and magnetic fields alters mean heart rate, the studies reported here are the first to examine effects of exposure on HRV. This report describes three double-blind studies involving a total of 77 human volunteers. In the first two studies, nocturnal exposure to an intermittent, circularly polarized magnetic field at 200 mG significantly reduced HRV in the spectral band associated with temperature and blood pressure control mechanisms (P = 0.035 and P = 0.02), and increased variability in the spectral band associated with respiration (P = 0.06 and P = 0.008). In the third study the field was presented continuously rather than intermittently, and no significant effects on HRV were found. The changes seen as a function of intermittent magnetic field exposure are similar, but not identical, to those reported as predictive of cardiovascular morbidity and mortality. Furthermore, the changes resemble those reported during stage II sleep. Further research will be required to determine whether exposure to magnetic fields alters stage II sleep and to define further the anatomical structures where field-related interactions between magnetic fields and human physiology should be sought. Bioelectromagnetics 19: 98–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号