首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to reveal the influence of brief DC electric stimulation on neurite outgrowth and outgrowth rates after application. Chick embryo dorsal root ganglia neurite outgrowth, rates, and overall alignment to EF were measured before stimulation and at two time points after stimulation. The presence of a 25 V/m EF for 10 min increased overall neurite outgrowth over controls for up to 48 h after stimulation and all growth was symmetric. These results demonstrate that even 10 min of stimulation, which is approximately 80% shorter than previous studies, promotes enhanced nerve growth.  相似文献   

2.
This study tests the capacity of 50 Hz magnetic and electric fields to stimulate neurite outgrowth in PC-12D cells, a cell line which originated from a pheochromocytoma in rat adrenal medulla. The cells were plated on collagen-coated, plastic petri dishes and exposed to sinusoidal 50 Hz magnetic fields for 22 h in a 5% CO2 incubator at 37°C. Two 1,000 turn coils, 20 cm in diameter, were assembled in a Helmholtz configuration to generate a magnetic field in a vertical orientation, thereby inducing a companion electric field in the dish with intensity proportional to radius. A magnetic-field shield housed the control samples in the same incubator. Total cells and number of cells with neurites at least as long as one cell diameter or having a growth cone were counted within a radius of 0.3 cm of the dish center and within an annulus of 1.7–1.8 cm radii in 60 mm dishes, at 3.6 cm radius in 100 mm dishes, and between 1.9 and 2.1 cm radii in the outer well of organ culture dishes, which are physically separated into two concentric wells. Sham exposure demonstrated no difference in percentage of cells with neurites between the exposed and control locations in the incubator. Exposures were done at 4.0. 8.9, 22, 29, 40, 120, 236, and 400 milliGauss (mG). At dish radii of 1.7–1.8 cm in the 60 mm dishes these magnetic flux densities induced electric fields of 1.1, 2.5, 5.9, 8.1, 11, 33, 65, and 110 μV/m, respectively, while within a radius of 0.3 cm, the induced electric fields were less than 0.2, 0.4, 1.0, 1.5, 1.9, 6.0, 11, and 19 μV/m, respectively. For other dishes, the larger radii produced proportionally larger induced electric fields. At each field strength, there were two control dishes and four to nine exposed dishes: 100 or more cells were counted at each location on the dishes. The results demonstrate that magnetic fields stimulate neurite outgrowth in a flux-density-dependent manner between 22 and 40 mG, reaching an apparent stimulation plateau between 40 and 400 mG; no effects were seen at 8.9 mG or lower. There was no apparent neurite stimulation due to the electric field. Although relatively low intensity (?22mG) magnetic fields alone can stimulate a morphological response in a cell which is normally stimulated by nerve growth factor molecules binding to membrane receptors, the chemical basis of this response is unknown. © 1993 Wiley-Liss. Inc.  相似文献   

3.
Previous work reported that nerve growth factor-stimulated neurite outgrowth in PC-12 cells could be altered by exposure to parallel alternating current (AC) and direct current (DC) magnetic fields under a variety of exposure conditions, producing results that are consistent with the predictions of the ion parametric resonance (IPR) model. The credibility of these results, considered extraordinary by some scientists, could be strengthened if the cell response were found to persist under alternate assay conditions. We replaced part of our standard assay procedure with a double blind procedure. This new procedure obscured 1) whether a particular set of dishes of cells was exposed or not, and 2) which individual dish was in which exposure system. The goal was to determine whether the previously observed responses of PC-12 cells to magnetic fields would be sufficiently robust to decode the imposed blinding, thereby removing any question of experimenter bias in reported results. We placed three coded dishes of cells in each of two otherwise identical exposure systems, one not energized and one energized to produce exposure conditions predicted to maximally suppress neurite outgrowth (Bdc of 36.6 μT, parallel 45 Hz AC of 23.8 μT rms). Each of the six dishes were recoded before assay to further obscure the exposure identity of any individual dish. The combined results of four distinct runs of these double blind experiments unequivocally demonstrated that 1) there was a clear, distinctive, repeatable consistency with the actual energization of the exposure systems and location of each dish, and with the predictions of the IPR model; 2) only the explicitly stated experimental variables influenced the experiment; and 3) the reported response of the cells was very improbably due to chance (P = .000024). Bioelectromagnetics 19:204–209, 1998. © 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group consisting of both United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    4.
    E A Chernoff 《Tissue & cell》1988,20(2):165-178
    Some phases of dorsal root ganglion (DRG) substratum attachment and growth cone morphology are mediated through endogenous cell surface heparan sulfate proteoglycan. The adhesive behavior of intact embryonic chicken DRG (spinal sensory ganglia) is examined on substrata coated with fibronectin, fibronectin treated with antibody to the cell-binding site (anti-CBS), and the heparan sulfate-binding protein platelet factor four. DRG attach to fibronectin, anti-CBS-treated fibronectin, and platelet factor four. The ganglia extend an extensive halo of unfasciculated neurites on fibronectin and produce fasciculated neurite outgrowth on platelet factor four and anti-CBS antibody-treated FN. Treatment with heparinase, but not chondroitinase, abolishes adhesion to fibronectin and platelet factor four. Growth cones of DRG on fibronectin have well-spread lamellae and microspikes. On platelet factor four, and anti-CBS-treated FN, growth cones exhibit microspikes only. Isolated Schwann cells adhere equally well to fibronectin and platelet factor four, spreading more rapidly on fibronectin. Isolated DRG neurons adhere equally well on both substrata, but only 10% of the neurons extend long neurites on platelet factor four. The majority of the isolated neurons on platelet factor four exhibit persistent microspike production resembling that of the early stages of normal neurite extension. Endogenous heparan sulfate proteoglycan supports the adhesion of whole DRG, isolated DRG neurons, and Schwann cells, as well as extensive microspike activity by DRG neurons, one important part of growth cone activity.  相似文献   

    5.
    We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc.  相似文献   

    6.
    Que HP  Li X  Li S  Liu SJ 《生理学报》2007,59(6):791-795
    对GPI-1046是否具有神经营养作用目前有两种不同的认识。Steiner等认为GPI-1046能促进体外培养的感觉神经节神经元突起生长。但Harper等却没能证明GPI-1046有这样的作用。由于GPI-1046在临床上具有重要应用价值和前景,我们重新评价了GPI-1046对体外培养鸡胚神经节的神经营养作用,发现在低浓度神经生长因子(nerve growth factor,NGF)存在下,GPI-1046能明显促进鸡背根神经节神经突起的生长。  相似文献   

    7.
    Zhang Y  Ding J  Duan W  Fan W 《Bioelectromagnetics》2005,26(5):406-411
    The influence of low frequency (50 Hz repetition rate) pulsed electromagnetic field (EMF) on PC12 cell neurite outgrowth in vitro was investigated in this study. We studied the percentage of neurite bearing cells, average length of neurites, and directivity of neurite outgrowth in PC12 cells cultured for 96 h in the presence of nerve growth factor (NGF). PC12 cells were exposed in one incubator to pulsed EMF at 1.36 mT (peak value) generated by a pair of Helmholtz coils, and the control samples were placed in another identical incubator. We found that the pulse duty cycle had significant effect on neurite outgrowth. Low (10%) pulse on-time significantly inhibited the percentage of neurite bearing cells, but at the same time increased the average length of neurites, while 100% on-time (DC) had exactly the opposite effects. Furthermore, we found that neurites were prone to extend along the direction of pulsed EMF with 10% pulse on-time. Our studies show that neurite outgrowth in PC12 cells is sensitive to the pulse duty and this sensitivity was associated with NGF concentration.  相似文献   

    8.
    Treatment for peripheral nerve injuries includes the use of autografts and nerve guide conduits (NGCs). However, outcomes are limited, and full recovery is rarely achieved. The use of nerve scaffolds as a platform to surface immobilize neurotrophic factors and deliver locally is a promising approach to support neurite and nerve outgrowth after injury. We report on a bioactive surface using functional amine groups, to which heparin binds electrostatically. X-ray photoelectron spectroscopy analysis was used to characterize the presence of nitrogen and sulfur. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were bound by electrostatic interaction to heparin, and the release profile evaluated by enzyme-linked immunosorbent assay, which showed that ca. 1% of NGF was released from each of the bioactive surface within 7 days. Furthermore, each surface showed a maximum release of 97% of BDNF. Neurotrophin release on neurite outgrowth was evaluated by primary dorsal root ganglion with a maximum neurite growth response in vitro of 1,075 µm detected for surfaces immobilized with NGF at 1 ng/ml. In summary, the study reports on the design and construction of a biomimetic platform to deliver NGF and BDNF using physiologically low concentrations of neurotrophin. The platform is directly applicable and scalable for improving the regenerative ability of existing NGCs and scaffolds.  相似文献   

    9.
    目的:探讨糖尿病大鼠膀胱与骶髓背根神经节(DRG)中神经生长因子(NGF)的表达与尿流动力学改变。方法:建立糖尿病大鼠模型10只,对照组10只,应用酶联免疫吸附试验(ELISA)法,分别检测大鼠膀胱组织及骶髓DRG中NGF的变化情况,结合代谢笼及尿流动力学改变,探讨糖尿病膀胱病变的可能发病机制。结果:造模12周后,糖尿病大鼠膀胱容量较正常对照组明显增大(1.47±0.28vs0.71±0.12,p〈0.05),残余尿量明显增多(0.52±0.18vs0.07±0.08,p〈0.01),排尿效率明显下降,膀胱及骶髓DRG中NGF表达水平明显降低。结论:NGF在糖尿病大鼠膀胱和骶髓背根神经节中低表达,在糖尿病膀胱病变中发挥着重要作用。  相似文献   

    10.
    目的:探讨糖尿病大鼠膀胱与骶髓背根神经节(DRG)中神经生长因子(NGF)的表达与尿流动力学改变。方法:建立糖尿病大鼠模型10只,对照组10只,应用酶联免疫吸附试验(ELISA)法,分别检测大鼠膀胱组织及骶髓DRG中NGF的变化情况,结合代谢笼及尿流动力学改变,探讨糖尿病膀胱病变的可能发病机制。结果:造模12周后,糖尿病大鼠膀胱容量较正常对照组明显增大(1.47±0.28vs0.71±0.12,p<0.05),残余尿量明显增多(0.52±0.18vs0.07±0.08,p<0.01),排尿效率明显下降,膀胱及骶髓DRG中NGF表达水平明显降低。结论:NGF在糖尿病大鼠膀胱和骶髓背根神经节中低表达,在糖尿病膀胱病变中发挥着重要作用。  相似文献   

    11.
    The influence of a pulsed magnetic field (PMF; sawtooth with 45-μs linear rise time and 5-μs decay time, peak strength of 15 μT, and frequency 20 pps) on the embryogenesis of CBA/S mice was investigated in five experiments based on a total of 707 exposed and 543 unexposed primigravidas. Sham and PMF exposures began on day 1 of gestation (experiments 1 and 2), on day 2 (experiment 3), on day 5 (experiment 4). and on day 7 (experiment 5): all exposures continued until day 19 post conception (p.c.) when they were terminated, at which time the following variables were measured: number of implants; number of placental resorptions; number of living fetuses; number of dead fetuses; number of malformations in living and dead fetuses; and length and body mass of living fetuses. Control dams were sham-exposed concurrently with corresponding. PMF-exposed dams. With the exception of experiment 5, in which exposure to PMF started on day 7 p.c., all groups of exposed mice had significantly more placental resorptions when compared with concurrent controls. The increased resorption rate was not reflected in a reduction in litter size or in the number of litters. A significant increase in malformed fetuses was not seen in any of the exposed groups, or when groups were pooled. Only in experiment 1 was the number of dead fetuses affected by exposure to PMF. The effect of PMF on the implantation rate was not significant. Body mass and length of exposed fetuses were significantly reduced only when the PMF treatment began on day 7 p.c. That PMF-treated mice had significantly more placental resorptions when exposure began on day 5 p.c. or earlier (before implantation), but not when exposure began on day 7 (after implantation), may indicate a causative pre-implantation effect. Because a PMF-induced increase in the number of resorptions has not been observed in other strains of mice, the effect might be strain-related. © 1993 Wiley-Liss, Inc.  相似文献   

    12.
    The biological response of cultured 7-day embryonic chick tibiae to small alternating currents induced by pulsed magnetic fields (PMFs) was investigated. It was found that continuous exposure to PMFs over 7 days did not alter the overall DNA content of rudiments nor the incorporation of 3H-thymidine when compared with control tibiae. The overall collagen content of explants was slightly reduced by PMF exposure whilst the incorporation of 3H-proline was significantly suppressed. The synthesis of sulphated glycosaminoglycans was also measured in terms of 35SO4--incorporation, but PMF treatment failed to alter the levels of isotope incorporation. These results suggest that, whereas noncollagenous, and possibly collagenous, protein synthesis is affected by PMF exposure, glycosaminoglycan synthesis is not. Histological and electron microscopical observations substantiated this interpretation and revealed selective inhibition of matrix secretion in the periphery of the proliferative epiphyseal zones in experimental explants. High-power electron microscope examination of these zones showed that PMF-exposed matrix was sparsely invested with fibrous protein while elements of the stellate reticulum had formed large aggregates which were often clumped about the cell membrane. The results are discussed in terms of the possible role of naturally occurring potentials in the development and maintenance of connective tissue systems such as cartilage and bone.  相似文献   

    13.
    In a previous study, explants from the neural tube of 2-day chick embryos, containing the trigeminal motor nucleus, showed specific enhancement of neurite outgrowth in the presence of culture medium conditioned by target musculature of an age at which innervation would normally be taking place in vivo. In the present study, similar explants were grown in the presence of target-conditioned medium from midincubation (10-day) embryos and late-incubation (18-day) embryos. At both of these later developmental stages, the target muscle-conditioned medium failed to produce enhanced neurite outgrowth. Rather, fewer processes were extended from the trigeminal explants in both experimental conditions compared to control cultures. This inhibitory effect was statistically significant in some cases, and did not appear to be related to the amount of target-conditioned medium present. It is concluded that trophic influences on nerve fiber outgrowth by target tissue are stage-specific in this system, and it is speculated that inhibitory influences such as those demonstrated may interact with excitatory influences in the normal patterning of the developing nervous system.  相似文献   

    14.
    Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25–30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

    15.
    Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7–93.5 ng/mm2). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth‐promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm2 and 1.4 ng/mm2, respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

    16.
    Introduction: Recent studies have shown that pulsed electromagnetic field (EMF) has therapeutic potential for dementia, but the associated neurobiological effects are unclear. This study aimed to determine the effects of pulsed EMF on Streptozotocin (STZ)-induced dementia rats.Methods: Forty Sprague-Dawley rats were randomly allocated to one of the four groups: (i) control, (ii) normal saline injection (sham group), (iii) STZ injection (STZ group) and (iv) STZ injection with pulsed EMF exposure (PEMF, 10 mT at 20 Hz) (STZ + MF group). Morris water maze was used to assess the learning and memory abilities. Insulin growth factors 1 and 2 (IGF-1 and IGF-2) gene expression were determined by quantitative PCR. Results: The results showed that the mean escape latency in STZ-induced dementia rats was reduced by 66% under the exposure of pulsed EMF. Compared with the STZ group, the swimming distance and the time for first crossing the platform decreased by 55 and 41.6% in STZ + MF group, respectively. Furthermore, the IGF-2 gene expression significantly increased compared to that of the STZ group. Conclusions: Our findings indicate that the pulsed EMF exposure can improve the ability of learning and memory in STZ-induced dementia rats and this effect may be related to the process of IGF signal transduction, suggesting a potential role for the pulsed EMF for the amelioration of cognition impairment.  相似文献   

    17.
    The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.  相似文献   

    18.
    19.
    20.
    The effects of pulsed electric fields on cell membranes were investigated. In vitro exposure of mouse splenocytes to a single high-voltage pulse resulted in an increase in membrane permeability that was dependent on both the electric field strength and the pulse duration. Exposure to a 2 μs, 3.0 kV/cm pulse resulted in the induction of a 1.26 V transmembrane potential, and elicited a 50% loss of intracellular K+. These results are in agreement with previous studies of the effects of pulsed electric fields on erythrocytes and microorganisms. The effect of pulsed electric fields on the functional integrity of lymphocytes was i vestigated by measuring [3H]thymidine incorporation by cells cultured in the presence and absence of various mitogens following exposure to an electrical pulse. No statistically significant effects on the response of mouse spleen lymphocytes to concanavalin A, phytohemagglutinin or lipopolysaccharide were observed following exposure to 2 μs electric pulses at amplitudes of up to 3.5 kV/cm. Exposure to a single 10 μs pulse of 2.4–3.5 kV/cm produced a statistically significant reduction in the response of lymphocytes to lipopolysaccharide stimulation that was attributed to cell death.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号