首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peritrophic envelope (PE) is an extracellular matrix that is secreted by the midgut epithelium in most arthropods. In addition to protecting the midgut epithelium from abrasive food particles and microbial pathogens, in vitro experiments have suggested that the PE functions as a radical-scavenging antioxidant in caterpillars. This study tested the hypothesis that the PE is a "sacrificial antioxidant" in vivo in caterpillars. As a sacrificial antioxidant, the PE would (1) bind catalytic metal ions, (2) become oxidized itself, and (3) protect the midgut epithelium from oxidative damage. Each of these functions was supported by our results: the PE in Malacosoma disstria adsorbed increased amounts of iron as the concentration of iron was increased in its diet. Iron adsorption by the PE helped protect the midgut epithelium of M. disstria from oxidative damage over a wide range of ingested iron concentrations. Secondly, while the midgut epithelium was protected, protein oxidation in the PE increased 108% when tannic acid was oxidized in the endoperitrophic space. Finally, when the formation of the PE was inhibited by Calcofluor, protein carbonyls in the midgut epithelia of M. disstria and Orgyia leucostigma increased by two- to threefold. We conclude that the PE functions as an effective iron-binding and radical-scavenging antioxidant that protects the midgut epithelia of caterpillars.  相似文献   

2.
In each of 30 dipteran species, representing 13 acalyptrate and 7 calyptrate families, the cardia is formed from specialized cells at the junction between foregut and midgut. Foregut epithelium forms the stomodeal valve; midgut epithelium envelops the valve to form the cardia's outer wall. Cytological characteristics within these epithelia differ from region to region and from species to species. Since the cardia secretes the peritrophic membrane, cardias with diverse patterns of cellular differentiation may be expected to produce peritrophic membranes with similarly diverse properties. Close relatives often share more details of cardia structure than do distantly related taxa. Within the monophyletic Calyptratae, a common pattern of cellular differentiation includes three distinct zones of columnar midgut cells enclosing a flanged stomodeal valve. Among species in the paraphyletic Acalyptratae, midgut typically includes a single zone of tall columnar cells, while the valve may be spheroidal, cylindrical, conical, or flanged. The correlation of phylogenetic distance with divergence in cardia organization implies a strong influence of ancestry upon current structure, regardless of current diet. However, at least some of the observed diversity in cardia structure is associated with dietary divergence. Calyptrate flies with derived blood-feeding behavior display cellular differentiation that is simplified from that seen in calyptrate relatives with less specialized feeding habits. This evolutionary modification suggests that cardia organization and hence peritrophic membrane structure can adapt to dietary changes, with possible significance for the spatial organization of digestive processes and interactions with ingested microorganisms.  相似文献   

3.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

4.
Magnesium and calcium ions, in concentrations comparable to those reported in the midgut fluids of lepidopteran larvae, bring about the precipitation of most of the tannic acid present in simple solutions buffered at pH 8.0 and 10.0, but not at pH 6.5. In contrast, when tannic acid is added to Manduca sexta midgut fluid, less than 31% of the tannic acid added to the gut fluid is converted to a form that can be centrifuged into a pellet. The rest remains in the supernatant solution in the form of a colloidal suspension. Very little of the tannic acid, if any, remains in true solution. We suggest that the tannic acid-containing phase that is produced when tannic acid is added to midgut fluid is a complex multi-molecular aggregate of indefinite chemical composition, incorporating varying amounts of tannic acid, surface-active phospholipids, proteins, and polyvalent metal ions. On the basis of this study, we further suggest that the failure of tannins to diffuse across the peritrophic envelopes of lepidopteran larvae is a result of the capacity of the peritrophic envelope to act as a physical barrier to insoluble and colloidally dispersed particles, not the presence of substances in the matrix that strongly adsorb polyphenols or the presence of an extensive network of fixed anionic sites in the matrix that acts as an electrostatic barrier to the passage of polyphenolate anions. Arch. Insect Biochem. Physiol. 39:109–117, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

5.
The role of the peritrophic envelope in the non-absorption of three allelochemicals ingested by generalist grasshoppers was examined. This study tested the hypothesis that the association of lipophilic and amphiphilic allelochemicals with lipid aggregates (mixed micelles) reduces their permeability through the peritrophic envelope, a process similar to extractive ultrafiltration. Each of three allelochemicals (digitoxin, ouabain, and xanthotoxin) were solubilized in a lysolecithin suspension and injected separately into the midgut lumens of adult Melanoplus sanguinipes (Orthoptera: Acrididae). The low permeability of digitoxin through the peritrophic envelope was consistent with the extractive ultrafiltration of this compound. By comparison, ouabain and xanthotoxin permeability coefficients were 7- and 12-fold higher, respectively, than those of digitoxin. The results of extractive ultrafiltration assays confirmed that digitoxin is effectively extracted in lysolecithin micelles, but that neither ouabain nor xanthotoxin aggregates efficiently with these micelles.  相似文献   

6.
《Insect Biochemistry》1980,10(5):543-548
An isozyme of leucine aminopeptidase (LAP D) in Drosophila melanogaster larvae was localized in the midgut cells, midgut lumen, the peritrophic membrane and the lumen contents of the hind intestine by histochemical methods. Leucine aminopeptidase activity in larvae increased in response to increased concentrations of dietary protein. The implications of a LAP D dependence on a secretagogue stimulus are discussed.  相似文献   

7.
In the midgut of Spodoptera frugiperda larvae, subcellular fractionation data suggest that aminopeptidase and part of amylase, carboxypeptidase A, dipeptidase, and trypsin are bound to the microvillar membranes; that major amounts of soluble dipeptidase, cellobiase, and maltase are trapped in the cell glycocalyx; and finally that soluble carboxypeptidase, amylase, and trypsin occur in intracellular vesicles. Most luminal acetylglucosaminidase is soluble and restricted to the ectoperitrophic contents. Aminopeptidase occurs in minor amounts bound to membranes both in the ectoperitrophic contents and incorporated in the peritrophic membrane. Amylase, carboxypeptidase A, and trypsin are found in minor amounts in the ectoperitrophic contents (both soluble and membrane-bound) and in major amounts in the peritrophic membrane with contents. Part of the activities recovered in the last mentioned contents corresponds to enzyme molecules incorporated in the peritrophic membrane. The results suggest that initial digestion is carried out in major amounts by enzymes in the endoperitrophic space and, in minor amounts, by enzymes immobilized in the peritrophic membrane. Intermediate and final digestion occur at the ectoperitrophic space or at the surface of midgut cells. The results also lend support to the hypothesis that amylase and trypsin are derived from membrane-bound forms, are released in soluble form by a microapocrine mechanism, and are partly incorporated into the peritrophic membrane. © 1994 Wiley-Liss, Inc.  相似文献   

8.
A. Becker  W. Peters 《Zoomorphology》1985,105(5):326-332
Summary The ultrastructure of the midgut epithelium of Phalangium opilio was examined. In the anterior part of the midgut the epithelium consists of three different types of cells, called resorption, digestion, and excretion cells according to their presumed functions. Excretion cells may represent old digestion cells. The relation between resorption and digestion cells needs further investigation. The epithelium of the posterior part of the midgut consists of two types, transport and secretion cells, which seem to serve mainly for the resorption of water and the secretion of peritrophic membranes, respectively.Peritrophic membranes are secreted by the anterior midgut epithelium mainly in a period between 2 and 4 h after feeding. Chitin or chitin precursors could be localized in vesicles and in the brush border of midgut cells, and in the peritrophic membranes, using colloidal gold labelled with wheat germ agglutinin. Two different textures of chitin-containing microfibrils were found in the peritrophic membranes, either a random or a hexagonal texture. The latter results if the microfibrils polymerize between the basal parts of the microvilli. Irregularities of the hexagonal texture can be correlated with an irregular pattern of the microvilli. In the posterior midgut peritrophic membranes with a random texture, chitin-containing microfibrils are continuously secreted in the form of patches.  相似文献   

9.
The synthesis of proteolytic enzymes in the fat body and midgut of female Culex nigripalpus was followed. The effects of brain factor(s) and RNA levels in the fat body were correlated with the synthesis of proteolytic enzymes. Trypsinlike activity in the midgut of C. nigripalpus accounted for 80% of total proteolytic activity, whereas chymotrypsinlike activity accounted for 5–7% of total proteolytic activity. Synthesis of porteases in the midgut and fat body reached a peak at 35 h and 22 h after the blood meal, respectively. In the fat body, proteolytic enzyme activity fell to a low level 30 h after the blood meal, but activity in the midgut reached a low level 58 h after the blood meal. The presence of low protease activity in the fat body at the time of peak vitellogenin synthesis indicated that processing of vitellogenin was not done in this tissue. Fat bodies incubated in vitro in the presence of [14C]valine synthesized a [14C]labeled trypsinlike molecule identified as such with antitrypsin antibodies and specific substrate p-toluene-sulphonyl-L-arginine methylester (TAME) and on disc gel electrophoresis in the presence of dodecyl sulfate. The sizes of the proteins found inside and outside the peritrophic membrane were determined by gel-chromatography and disc gel electrophoresis in the presence of dodecyl sulfate. The molecular weight (± SEM) of the largest polypeptide that migrated through the peritrophic membrane into the ectoperitrophic space was found to be 23,000 ± 2,000 daltons. Based on these results, a model is proposed to account for blood digestion in the mosquito midgut, along with the role of the peritrophic membrane.  相似文献   

10.
For the first time a sugar receptor (lectin) has been localized by electron microscopy in an invertebrate. The peritrophic membrane of the blowfly larva, Calliphora erythrocephala, is shown here to express lectins with high specificity for mannose. The lectin is restricted to the lumen side of the peritrophic membrane. The surface of the midgut epithelium is devoid of mannose-specific lectins. It is suggested that the midgut epithelium has lost these lectins during the course of evolution in favour of the peritrophic membrane which is secreted by specialized cells only at the beginning of the midgut.Peritrophic membranes and the midgut epithelium lack lectins specific for galactose. The lumen side of the peritrophic membrane of the larvae has mannose and/or glucose residues, and it is densely packed with two species of bacteria, Proteus vulgaris and P. morganii. These also have mannose-specific lectins as well as mannose residues on their pili. The existence of mannose-specific receptors and mannose residues on both, peritrophic membranes and bacteria, leads to the assumption of mutual adherence between the two surfaces.  相似文献   

11.
Microfilarial perforation of the midgut of a mosquito   总被引:1,自引:0,他引:1  
To determine whether the midgut envelope of mosquitoes is disrupted by the passage of microfilariae, ultrastructural changes induced by microfilariae of Brugia malayi were observed in midguts of Aedes aegypti mosquitoes. Basal and apical plasma membranes were destroyed, disrupting the full depth of the midgut wall. Ingested ferritin lay against the gut wall, suggesting absence of the peritrophic membrane during penetration. Exsheathment of microfilariae appears to be enhanced by movement against the constricting midgut wall. It was concluded that particles present in the lumen of the gut may be disseminated passively to the hemocoel.  相似文献   

12.
Abstract Present understanding of the development of sexual stages of the human malaria parasites Plasmodium vivax and P.falciparum in the Anopheles vector is reviewed, with particular reference to the role of the mosquito midgut in establishing an infection. The sexual stages of the parasite, the gametocytes, are formed in human erythrocytes. The changes in temperature and pH encountered by the gametocyte induce gametogenesis in the lumen of the midgut. Macromolecules derived from mosquito tissue and second messenger pathways regulate events leading to fertilization. In An.tessellatus the movement of the ookinete from the lumen to the midgut epithelium is linked to the release of trypsin in the midgut and the peritrophic matrix is not a firm barrier to this movement. The passage of the P. vivax ookinete through the peritrophic matrix may take place before the latter is fully formed. The late ookinete development in P.falciparum requires chitinase to facilitate penetration of the peritrophic matrix. Recognition sites for the ookinetes are present on the midgut epithelial cells. N-acetyl glucosamine residues in the oligosaccharide side chains of An.tessellatus midgut glycoproteins and peritrophic matrix proteoglycan may function as recognition sites for P.vivax and P.falciparum ookinetes. It is possible that ookinetes penetrating epithelial cells produce stress in the vector. Mosquito molecules may be involved in oocyst development in the basal lamina, and encapsulation of the parasite occurs in vectors that are refractory to the parasite. Detailed knowledge of vector-parasite interactions, particularly in the midgut and the identification of critical mosquito molecules offers prospects for manipulating the vector for the control of malaria.  相似文献   

13.
The intrinsic peritrophic matrix glycoprotein, peritrophin-95, from the midgut of larvae of Lucilia cuprina can only be solubilized from the matrix using strong denaturants. This suggests that the protein has a structural role in the matrix. Consistent with this is the finding that immuno-gold and immuno-fluorescence localizations of the protein showed a uniform distribution within the peritrophic matrix. RT-PCR demonstrated that expression of peritrophin-95 mRNA was restricted to the larval cardia, a small organ located in the anterior midgut from which the type 2 peritrophic matrix originates. Immuno-blots and ELISAs demonstrated that the sera from sheep infested naturally or artificially with these larvae recognised peritrophin-95. This indicates that peritrophin-95 stimulates the ovine immune system during larval infestation even though the protein is firmly attached to the peritrophic matrix in the larval midgut and seemingly "concealed" from the ovine immune surveillance system. Analyses of larval regurgitated or excreted material by immuno-blots, immuno-affinity purification and amino-terminal sequencing demonstrated the presence of soluble monomeric peritrophin-95. These results indicate that peritrophin-95, a candidate vaccine antigen for use in sheep is not a "concealed" antigen as previously thought. The presence of soluble peritrophin-95 in the regurgitated/excreted material from larvae suggests that this protein may be involved in a maturation phase of peritrophic matrix production, a by-product of which is the excretion or regurgitation of soluble peritrophin-95.  相似文献   

14.
There is a a fluid (peritrophic gel) or membranous (peritrophic membrane, PM) film surrounding the food bolus in most insects. The PM is composed of chitin and proteins, of which peritrophins are the most important. It is proposed here that, during evolution, midgut cells initially synthesized chitin and peritrophins derived from mucins by acquiring chitin-binding domains, thus permitting the formation of PM. Since PM compartmentalizes the midgut, new physiological roles were added to those of the ancestral mucus (protection against abrasion and microorganism invasion). These new roles are reviewed in the light of data on PM permeability and on enzyme compartmentalization, fluid fluxes, and ultrastructure of the midgut. The importance of the new roles in relation to those of protection is evaluated from data obtained with insects having disrupted PM. Finally, there is growing evidence suggesting that a peritrophic gel occurs when a highly permeable peritrophic structure is necessary or when chitin-binding molecules or chitinase are present in food.  相似文献   

15.
1. Organisms rely on a set of primary barriers to prevent invasion by parasites, and secondary defences to fight parasites that breach the primary barriers. However, maintaining these defences to be active and effective is costly. Thus, hosts increase investment in anti‐parasite defences under situations of high risk of infection and reduce defences when the risk is reduced (the ‘Density‐Dependent Prophylaxis’ hypothesis). 2. In the present study, it was tested whether the midgut primary defences of the velvetbean caterpillar Anticarsia gemmatalis Hübner present density‐dependent plasticity, and also whether these defences could be induced by a viral pathogenic challenge. The aim was to examine whether morphometry and the structure of the midgut and peritrophic matrix (PM) change in accordance with colour transition in caterpillars, and whether such changes may provide the caterpillars a more protective barrier against invasion by Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV). 3. It was found that PM and the midgut epithelium of the velvetbean caterpillar change plastically according to phenotype, itself a response to changes in population density. Caterpillars reared at high densities (black phenotype) had a considerably thicker midgut epithelia and peritrophic matrices than those reared individually (green phenotype), and there was also more chitin in the PM of the former. 4. This was interpreted as the first demonstration of increased investment in primary, barrier, defences against parasites, in response to increased conspecific density and an increased risk of infection. The possibility that this arises as a positive result of pleiotropy is discussed further, wherein the biochemical pathways responsible for the up‐regulation of the immune system are also involved in midgut properties.  相似文献   

16.
The chitinase secreting strain KPM‐012A of Alcaligenes paradoxus was isolated from tomato leaves and vitally entrapped in sodium alginate gel beads to provide a new method for biocontrol of phytophagous ladybird beetles Epilachna vigintioctopunctata. First, the peritrophic membrane was dissected from the adult ladybird beetles that ingested the suspension of KPM‐012A after starvation to observe degradation of the midgut surface by the bacteria under electron microscopy. The peritrophic membrane around the bacteria was degraded, suggesting the release of chitinase from the ingested bacteria. Large amounts of chitinase were successfully released from KPM‐012A‐entrapped calcium alginate beads. This chitinase release from the microbial beads was sustained for 1 week and was sufficient to digest the peritrophic membrane. Daily supply of tomato leaves treated with the microbial beads caused considerable suppression of leaf feeding and oviposition by the adult ladybird beetles, indicating that this method is effective for decreasing population of insect pests in the subsequent generation. Thus, the present study provided an experimental basis for the biocontrol measures of herbivorous insect pests by the chitinolytic bacteria entrapped in alginate beads.  相似文献   

17.
The alimentary tract of the desert millipede Orthoporus ornatus is essentially a straight tube consisting of a histologically distinct foregut, midgut, pylorus, hindgut, and rectum. Common to each region, but often different in regional appearance, are an outer sheath layer, longitudinal and circular muscle layers, a basement membrane, and an inner epithelial layer. Foregut and midgut lumina are lined by a cuticular intima, while a peritrophic membrane occurs in the midgut lumen. Gut structure is considered in the context of the known feeding habits and digestive efficiency of this long-lived, seasonally restricted detritivore.  相似文献   

18.
We studied the point at which a monoclonal antibody (mAb C5) to a surface protein (Pgs25) on Plasmodium gallinaceum ookinetes blocked the infection of Aedes aegypti mosquitoes. The antibody did not block the development of zygotes to ookinetes in vitro. Development of ookinetes to oocysts in the mosquito was blocked to the same extent whether zygotes grew to ookinetes in the presence of mAb C5 or the antibody was added after the ookinetes had reached full development. When ookinetes developed in vitro in the presence of mAb C5, antibody remained on the surface of the parasite for the next 50 hr and did not block attachment to the peritrophic membrane. When ookinetes were fed to mosquitoes, two subpopulations of mosquitoes were observed (high numbers of oocysts per midgut and low numbers of oocysts per midgut). mAb C5 reduced the number of oocysts per midgut in the subpopulation that had low numbers of oocysts. The subpopulation that had high numbers of oocysts was unaffected by antibody, indicating that the antibody did not block invasion of the midgut epithelium. When mAb C5 was fed with gametocytes, the parasites invaded the epithelium at the same time (between 30 and 35 hr after the blood meal) as in controls, although at a markedly reduced rate. The ultrastructural observations were consistent with a block of parasites within the peritrophic membrane and not with a block at the epithelium, as parasites were not seen to accumulate within the space between the peritrophic membrane and the epithelium. The mechanism by which mAb C5 to Pgs25 of P. gallinaceum blocks the penetration of the peritrophic membrane remains undefined. We present evidence that the parasite modifies the peritrophic membrane during penetration, an observation first made for Babesia microti during penetration of the peritrophic membrane in Ixodes ticks. Ookinetes in the absence of antibodies appeared to disrupt the layers of the peritrophic membrane, suggesting an enzymatic mechanism for penetration.  相似文献   

19.
Entomotoxic plant lectins have been extensively studied in the past two decades, yet the exact mechanisms underlying their toxic effects remain unknown. This study investigated the effects of Dioclea violacea lectin (DVL) on larval development in Anagasta kuehniella. Chronic exposure of larvae (from neonates to the fourth instar) demonstrated that DVL interfered with larval growth, retarding development and decreasing larval mass without affecting survival. DVL decreased trypsin-like, chymotrypsin-like, and α-amylase activities and proved resistant to proteolysis by midgut proteases up to 24 h. Shorter exposures to dietary DVL had no effect on midgut enzyme activity. Feeding fourth-instar larvae with fluorescently-labeled DVL revealed lectin binding to the peritrophic membrane.  相似文献   

20.
The midgut of most insects is lined with a peritrophic matrix, which is thought to facilitate digestion and protect the midgut digestive epithelial cells from abrasive damage and invasion by ingested micro-organisms. The type 2 peritrophic matrix is synthesised by a complex and highly specialised organ called the cardia typically located at the junction of the cuticle-lined foregut and midgut. Although the complex anatomy of this small organ has been described, virtually nothing is known of the molecular processes that lead to the assembly of the type 2 peritrophic matrix in the cardia. As a step towards understanding the synthesis of the peritrophic matrix, the synthesis and secretion of the intrinsic peritrophic matrix protein, peritrophin-15 has been followed in the cardia of Lucilia cuprina larvae using immuno-gold localisations. The protein is synthesised by cardia epithelial cells, which have abundant rough endoplasmic reticulum, Golgi, and vesicles indicative of a general secretory function. Peritrophin-15 is packaged into secretory vesicles probably produced from Golgi and transported to the cytoplasmic face of the apical plasma membrane. The vesicles fuse with the plasma membrane at the base of the microvilli and release peritrophin-15 into the inter-microvilli spaces. The protein then becomes associated with the nascent peritrophic matrix, which lies along the tips of the epithelial cell microvilli. It is proposed that peritrophin-15 binds to the ends of chitin fibrils present in the nascent peritrophic matrix, thereby protecting the fibril from the action of exochitinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号