首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The cuticular hydrocarbons from adult Phormia regina (Meigen) were characterized by gas chromatography-mass spectrometry. Both sexes had similar components in nearly identical quantities, consisting of complex mixtures of saturated n-, monomethyl- and dimethylalkanes from 23 to 33 total carbons. Although no diet-, age-, or sex-specific differences were observed, cuticular hydrocarbons were shown to be involved in copulatory behavior. Hydrocarbon profiles of wild, compared to laboratory reared flies, showed no major differences. Behaviorally, males responded the same to dead decoys of either sex. Removal of the hydrocarbons, using hexane, from either male or female decoys, did not affect the number of mating strikes, but markedly reduced the number of copulatory attempts and the amount of time males spent mounted on either decoy. House fly, Musca domestica L., males when paired with a female M. domestica decoy produced copulatory attempts: whereas, when P. regina males were placed with M. domestica female decoys, there were no copulatory attempts. It is concluded that the cuticular hydrocarbons of P. regina function as species-specific but not sex-specific mating cues and elicit species-specific copulatory behavior in males.  相似文献   

2.
Sexual dimorphism is thought to result from directional sexual selection acting on male signal traits, with female signal traits given little, if any, attention. Here, we examine male mating preferences in the Australian field cricket, Teleogryllus oceanicus. Using a multivariate selection analysis approach, we found that male preferences have the potential to exert selection on female cuticular hydrocarbons, chemical compounds widely used as sexual signals in insects. In addition to finding both stabilizing and disruptive preference gradients, we also found weak negative directional preference for female cuticular hydrocarbons. We contrast our results with a recent study examining sexual selection via female choice on male T. oceanicus cuticular hydrocarbons and suggest that differences in the form and intensity of sexual selection between the genders may provide part of the net selection differential necessary for the evolution of sexual dimorphism in this species.  相似文献   

3.
Abstract.  Houseflies ( Musca domestica L.) are a major pest species of livestock units and landfill sites. Insecticide resistance has resulted in an increased emphasis on lure-and-kill control methods, but the success of this approach relies on the effective attraction of houseflies with olfactory or visual stimuli. This study examined the efficacy of olfactory (cuticular hydrocarbons) or visual (colours and groups of flies) attractants in a commercial poultry unit. Despite simulating the cuticular hydrocarbon profiles of male and female houseflies, we found no significant increase in the number of individuals lured to traps and no sex-specific responses were evident. The use of target colours selected to match the three peaks in housefly visual spectral sensitivity yielded no significant increase in the catch rate of traps to which they were applied. This study also demonstrated that male and female flies possess significantly different spectral reflectance (males are brighter at 320–470 nm; females are brighter at 470–670 nm). An experiment incorporating groups of recently killed flies from which cuticular hydrocarbons were either removed by solvent or left intact also failed to show any evidence of olfactory or visual attraction for houseflies of either sex. This study concluded that variations of the most commonly applied methods of luring houseflies to traps in commercial livestock units fail to significantly increase capture rates. These results support commonly observed inconsistencies associated with using olfactory or visual stimuli in lure-and-kill systems, possibly because field conditions lessen the attractant properties observed in laboratory experiments.  相似文献   

4.
Sexual signals can convey important information about mate quality, such as critical information about a signaler's health status, helping an individual to avoid infected or immunocompromised conspecifics. Chemical signals are especially important in this context, because they represent an honest and dynamic signaling modality that receivers can use to make updated mate choice decisions to avoid compromising their own health. In this study, we investigated the viability of male chemical cues in the wolf spider Schizocosa ocreata as a reliable indicator of health status. Using video playback with images of an average male that is simultaneously paired with male cuticular compounds on filter paper, we show that females are more receptive to videos paired with cues from control males rather than infected males. We also show that these cuticular compounds can be isolated and retain similar female behavioral responses when extracted with a nonpolar solvent, suggesting that these cuticular compounds may not be just complex hydrocarbons, but a combination of cuticular compounds. This is the first evidence for female discrimination and recognition of male chemical cues in this species, which opens up important new avenues of research in a well‐studied species with complex multimodal signaling.  相似文献   

5.
We examined the biophysical properties of cuticular lipids isolated from the housefly, Musca domestica. Melting temperatures (Tm) of surface lipids isolated from female houseflies decreased from 39.3 °C to 35.3 °C as the females attained sexual maturity and produced sex pheromone, whereas those prepared from males did not change with age. Lipids melted over a 10–25 °C temperature range, and their physical properties were a complex function of the properties of the component lipids. The Tm of total cuticular lipids was slightly below that of cuticular hydrocarbons (HC), the predominant lipid fraction. Hydrocarbons were further fractionated into saturated, unsaturated, and methyl-branched components. The order of decreasing Tm was total alkanes > total HCs > methyl-branched alkanes > alkenes. For 1-day-old flies, measured Tms of hydrocarbons were 1.3–5.5 °C lower than Tms calculated from a weighted average of Tms for saturated and unsaturated components. For 4-day-old flies, calculated Tms underestimated Tm by 11–14 °C. © 1995 Wiley-Liss, Inc.  相似文献   

6.
We are interested in elucidating the extent to which lekking Hawaiian Drosophila species have diverged from their continental counterparts, which engage in sexual behavior at communal food sources, with regard to the chemical communication systems that the flies employ. Accordingly, we have analyzed flies from three closely related Hawaiian Drosophila species in the adiastola subgroup. These species are of interest because the males engage in a unique behavior: while courting, they raise their abdomens over their heads and emit anal droplets. Analysis of the flies' behavior, the hydrocarbons in males' anal droplets, and males' cuticular hydrocarbons suggest that females' responses to males may be mediated by cuticular pheromones and/or pheromones in males' extruded droplets that enable the females to distinguish conspecific from heterospeciflc males. Conversely, perception of cuticular hydrocarbons from conspecific females enables D. adiastola males to distinguish females from a closely related species from conspecific females. On the basis of these observations, we suggest that the adiastola subgroup species are unique among drosophilids in that they utilize an anal droplet-mediated pheromone communication system, some or all components of which are species specific. However, the lekking Hawaiian Drosophila species are similar to D. melanogaster and related continental species in that the Hawaiian flies employ a cuticular pheromone communication system, some components of which are sex and species-specific.  相似文献   

7.
Insect cuticular hydrocarbons (CHCs) play important roles in mate recognition and chemical communication. To explore the cues regulating courtship and mating behaviour in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), CHCs were extracted from mature virgin female and male oriental fruit flies using n‐hexane. Nine compounds – i.e., 4‐allyl‐2,6‐dimethoxyphenol (designated ‘compound 3’) and eight ester compounds – had significantly greater abundance in female samples than in males. Of these nine compounds, six (1, 2, 4, 5, 6, and 8) elicited electrophysiological responses from the antennae of male flies. Compound 3 did not elicit a detectable male antennal response, but in Y‐tube olfactometer bioassays, it exhibited robust attractiveness to conspecific males at close range. We speculate that compound 3 is a close‐range sex pheromone in B. dorsalis. A mating competition experiment revealed that compound 3 significantly increased the competitiveness of males, which implied that compound 3 might be used in control programs of B. dorsalis.  相似文献   

8.
Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be -- mostly but not only -- detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.  相似文献   

9.
The glycerol concentration and the composition of cuticular and internal sterols in three medically and forensically important fly species, viz., Musca domestica, Sarcophaga carnaria, and Calliphora vicina, were analyzed. The cuticular and internal lipid extracts were separated by HPLC‐LLSD, after which the sterol fraction was characterized by GC/MS in total ion current (TIC) mode. The cuticular lipids of M. domestica larvae contained seven sterols, while in pupae and females, six sterols were identified. Five sterols were found in the cuticular lipids of M. domestica males. The internal lipids of M. domestica larvae and pupae contained six and seven sterols, respectively, while those of male and female flies contained only five sterols. Sitosterol, cholesterol, and campesterol were the dominant sterols in M. domestica, while campestanol, stigmasterol, sitostanol, and fucosterol were identified in low concentrations or in traces. In contrast, cuticular and internal lipids of S. carnaria and C. vicina contained only cholesterol. Glycerol was identified in all stages of M. domestica, S. carnaria, and C. vicina. For all the three examined fly species, the present study clearly showed species‐specific developmental changes in the composition of cuticular and internal sterols as well as in the glycerol concentration.  相似文献   

10.
The biosynthesis of cuticular hydrocarbons was investigated in male and female Drosophila melanogaster (Canton-S strain), especially in those with a pheromonal role i.e. male 7-tricosene and female 7, 11- heptacosadiene. The incorporation of radioactivity was followed after topical application of (14)C-labelled myristic, palmitic and stearic acid and (3)H-labelled cis-vaccenic acid on one to ten day old flies. The incorporation levels into unsaturated hydrocarbons are similar in both sexes, depending markedly on the chain length of the saturated precursor, with a maximum level from myristic acid. Cis-vaccenic acid leads only to unsaturated compounds. With this precursor, there is an enhanced incorporation into female monoenes and dienes, maximum in two to three day old females. The total fatty acid composition shows the highest abundance of fatty acids with 16 carbon atoms and the presence of a major position for double bond, Delta9. Moreover, cis-vaccenic acid and 17-tetracosenoic acid are identified by GC-MS analysis. These data support an elongation-decarboxylation mechanism for the biosynthesis of D. melanogaster cuticular hydrocarbons. Its early steps for male monoenes and female monoenes and dienes might involve a Delta9 desaturase transforming palmitic acid into palmitoleic acid which would then be elongated into vaccenic acid, an important common precursor for all pheromones.  相似文献   

11.
Background

Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host’s nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography – mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies.

Results

All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays.

Conclusions

While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.

  相似文献   

12.
House fly (Musca domestica) males are highly attracted to dead female flies infected with the entomopathogenic fungus Entomophthora muscae. Because males orient to the larger abdomen of infected flies, both visual and chemical cues may be responsible for the heightened attraction to infected flies. Our behavioral assays demonstrated that the attraction is sex-specific-males were attracted more to infected females than to infected males, regardless of cadaver size. We examined the effect of E. muscae on the main component of the house fly sex pheromone, (Z)-9-tricosene, and other cuticular hydrocarbons including n-tricosane, n-pentacosane, (Z)-9-heptacosene, and total hydrocarbons of young (7 days old) and old (18 days old) virgin females. Young E. muscae-infected female flies accumulated significantly less sex pheromone and other hydrocarbons on their cuticular surface than uninfected females, whereas the cuticular hydrocarbons of older flies were unaffected by fungus infection. These results suggest that chemical cues other than (Z)-9-tricosene, visual cues other than abdomen size, or a combination of both sets of cues might be responsible for attraction of house fly males to E. muscae-infected females.  相似文献   

13.
Envipnmental cues,mainly photoperiod and temperature,are known to control female adult reproductive diapause in several insect species.Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season.Male diapause(a reversible inability to inseminate receptive females)has been studied much less than female diapause.However,if the males maximized their chances to fertilize females while minimizing their energy expenditure,they would be expected to be in diapause at the same time as females.We investigated Drosophila montana male mating bchavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive.We also found that males reared under long-day conditions(reproducing individuals)court reproducing postdiapause fermales,but not diapausing ones.The diapausing fies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones,which presumably increase their survival under stressful conditions,but at the same time decrease their attractiveness.Our study shows that the mating behavior of females and males is well coordinated during and afier overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.  相似文献   

14.
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within‐population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair‐mated adults from no‐choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population‐specific plasticity in CHCs. Different groups of CHCs mediated female choice‐based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.  相似文献   

15.
We studied genetic variation in fly mating signals and mate choice in crosses within and between inbred strains of Drosophila montana. Male songs and the cuticular hydrocarbons of both sexes as well as some of the flies’ behavioural traits differed significantly between strains. This did not, however, cause sexual isolation between strains. In fact, courtship was shorter if the female was courted by a male of a foreign strain than when courted by their own male. Heterosis was found for courtship duration and the carrier frequency of male song. Diallel analysis of male song revealed additive genetic variation in four out of the five traits studied. Two traits showed dominance variation and one of these, carrier frequency, expressed unidirectional dominance with alleles for higher carrier frequency being dominant. Direction of dominance in carrier frequency was the same as the direction of sexual selection exercised by D. montana females on this trait, which suggests that sexual selection could be a driving force in the evolution of song towards a higher carrier frequency.  相似文献   

16.
De novo synthesis of contact female sex pheromone and hydrocarbons in Blattella germanica was examined using short in vivo incubations. Accumulation of pheromone on the epicuticular surface and the internal pheromone titer were related to age-specific changes in hydrocarbon synthesis and accumulation in normal and allatectomized females. The incorporation of radiolabel from [1-14C]propionate into the cuticular methyl ketone pheromone fraction was positively related to corpora allata activity during two gonotrophic cycles. During peak pheromone production the total internal lipid fraction contained greater titers of pheromone than the cuticular surface, and it too exhibited a cycle internally, preceding the rise in external pheromone. This suggests that synthesis and accumulation of pheromone internally are followed by transport of pheromone to the epicuticular surface where it accumulates. Radiolabel was incorporated efficiently into both cuticular and internal hydrocarbons after the imaginal molt and until the peak of pheromone synthesis, but it declined to lower levels before ovulation and throughout pregnancy. The internal hydrocarbon titer decreased 58% after oviposition, suggesting deposition in the egg case. It remained relatively unchanged during pregnancy and increased again during the second gonotrophic cycle. In allatectomized females, hydrocarbon synthesis was reduced relative to control females until oviposition in the latter. However, subsequent rates of hydrocarbon synthesis in allatectomized females (without oothecae) exceeded the rates in sham-operated females (with oothecae). In the absence of ovarian uptake of hydrocarbons, the internal titer increased without the decline found in control females at oviposition. As internal hydrocarbons increased, so did cuticular hydrocarbons and both internal and cuticular methyl ketone pheromones. These patterns corresponded well with feeding patterns in sham-operated and allatectomized females, suggesting that pheromone production is normally regulated by stage-specific feeding-induced hydrocarbon synthesis (precursor accumulation internally) and juvenile hormoneinduced conversion of hydrocarbon to pheromone. They also suggest that both the cuticle and the ovaries might be target sites for hydrocarbon and possibly methyl ketone deposition. © 1994 Wiley-Liss, Inc.  相似文献   

17.
In Drosophila melanogaster, the main cuticular hydrocarbons (HCs) are some of the pheromones involved in mate discrimination. These are sexually dimorphic in both their occurrence and their effects. The production of predominant HCs has been measured in male and female progeny of 220 PGa14 lines mated with the feminising UAS-transformer transgenic strain. In 45 lines, XY flies were substantially or totally feminised for their HCs. Surprisingly, XX flies of 14 strains were partially masculinised. Several of the PGa14 enhancer-trap variants screened here seem to interact with sex determination mechanisms involved in the control of sexually dimorphic characters. We also found a good relationship between the degree of HC transformation and GAL4 expression in oenocytes. The fat body was also involved in the switch of sexually dimorphic cuticular hydrocarbons but its effect was different between the sexes.  相似文献   

18.
Analysis of cuticular hydrocarbons from mated and unmated male houseflies, Musca domestica, indicated that only minor changes in composition occurred during the post-eclosion period. In contrast, female hydrocarbon composition changed considerably during the post-eclosion period and was affected by age, mating, and sexual maturation. The cuticular hydrocarbons from sexually mature female houseflies, both mated and unmated, were attractive to male houseflies. Hydrocarbons from unmated male houseflies were not attractive to male houseflies. Hydrocarbons from males held to maturity with females were somewhat attractive to males, probably as a result of physical transfer of the attractant from the females.  相似文献   

19.
Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males.  相似文献   

20.
Two desiccation-sensitive mutants of Drosophila melanogaster were isolated. Genetic analysis showed that the phenotype is controlled by a recessive gene parched located in 1A1-8 of the X-chromosome. In a desiccated environment without any water supply, the survival time of the mutant flies was considerably shorter than that of the wild-type flies. The rate of water loss in the mutant flies was significantly higher than that of the wild-type flies, whether dead or alive. The survival time of the mosaic flies, which have the mutant and wild-type cuticle, was prolonged in proportion to the amount of wild-type cuticle which they possessed. These results suggest that the mutant has a defect in some waterproofing mechanism of the integument. The mutant flies drank much more water than the wild-type flies, to compensate for the rapid water loss. The hydrocarbons, which are the predominant constituent of cuticular lipids, were analyzed by gas-liquid chromatography, but there were no significant quantitative nor qualitative differences between the wild-type and the mutant flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号