首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insect digestive proteinases are often strongly influenced by ambient physicochemical conditions, such as pH, ionic strength, and oxidation-reduction potential. Although the effects of the former two parameters are well documented, the influence of redox potential on catalytic rates of digestive enzymes is not well understood. In this study, we manipulated the midgut redox potential of a generalist caterpillar (the corn earworm, Helicoverpa zea) by augmenting artificial diet with dithiothreitol, a powerful thiol reducing agent that lowers the redox potential in the lumen by 40-45 mV. Effects on total proteolytic activity, as well as on elastase, chymotrypsin, trypsin, leucine aminopeptidase, and carboxypeptidase A and B activities were measured using azocasein and nitroanilide model substrates. The profiles of proteinase activities in the epithelium and lumen were also monitored on days 1, 2, and 3 after the molt in penultimate instar larvae. Although the reducing agent strongly inhibited the activity of some proteinases in vitro, ingestion of the reducing diet failed to affect in vivo proteinase activities. There was also no effect on larval relative growth, consumption, or digestive efficiencies. We conclude that dietary reducing agents must lower midgut redox potential to below -40 mV to significantly impact digestive efficiency. Arch.  相似文献   

2.
Calcofluor disrupts the midgut defense system in insects   总被引:14,自引:0,他引:14  
The insect midgut is generally lined with a unique protective chitin/protein structure, the peritrophic membrane (PM). We demonstrated that in Trichoplusia ni larvae, the majority of PM proteins were assembled with chitin as a consequence of their chitin binding properties. These proteins could be dissociated from the PM in vitro by Calcofluor, a well-known chemical with chitin binding properties. The chitin binding characteristics of PM proteins were confirmed by their high affinity binding in vitro to regenerated chitin. In vivo assays demonstrated that Calcofluor could inhibit PM formation in five lepidopteran insects tested. The inhibition of T. ni PM formation by Calcofluor, was accompanied by increased larval susceptibility to baculovirus infection. Continuous inhibition of PM formation by Calcofluor resulted in retarded larval development and mortality. The destructive effect of Calcofluor on PM formation was demonstrated to be transient and reversible depending on the presence of Calcofluor within the midgut. In addition, degradation of the insect intestinal mucin was observed concurrently with the inhibition of PM formation by Calcofluor. Our studies revealed a potential novel approach to develop strategies for insect control by utilizing chitin binding molecules to specifically target PM formation in a broad range of insect pest species.  相似文献   

3.
In this study, the possibility of keratin extraction from wool and feather by an enzymatic treatment along with a reducing agent has been investigated. The effects of different parameters, that is, enzyme loading, type of substrate and surfactant, hydrolysis time, and reducing agent concentration, have been examined in order to optimize the enzymatic hydrolysis. The optimal condition for maximum keratin extraction was attained by making use of 1 g/L sodium dodecyl sulfate (an anionic surfactant) and 2.6% (v/v) protease (Savinase), along with 8.6 and 6.4 g/L sodium hydrogen sulfite (a reducing agent) for wool and feathers, respectively, at liquor to fiber ratio of 25 mL/g for 4 hr. The obtained results indicated higher degradation of wool fiber in comparison with feathers, which might be due to the higher hydrophilic nature of the former. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) patterns revealed that the molecular weights of the extracted proteins from wool and feather were lower than those for the untreated fibers. Scanning electron micrographs showed fibers fibrillation and degradation upon enzymatic treatment. Besides, Fourier-transform infrared (FTIR) spectra indicated no evident changes in the chemical structure of the hydrolyzed fibers. However, wool and feather remainders were mostly composed of α-helix and β-sheets conformations, respectively.  相似文献   

4.
Phlebotomus papatasi females were fed through membranes or from cotton wool soaked in blood, water, sucrose or sodium chloride solutions. In membrane-fed flies, all diets were routed to the midgut and not to the crop. Following the meals that went to the midgut, females showed ovarian development at least 3 times greater than in sucrose-fed, autogenous control flies. Neither small quantities of water arriving in the midgut following drinking from soaked cotton wool, nor piercing of a membrane without feeding, stimulated ovarian development. Flies exhibited different feeding behaviour namely, blood feeding, sugar feeding, and water drinking. The blood-feeding behaviour was typical of flies ingesting any of the experimental diets through membranes, or blood or saline from cotton wool. The other two types of behaviour were observed in flies which fed from soaked cotton wool. The type of behaviour was characterized by the depth of penetration of the mouthparts into the substrate, the deployment of the palps and the degree of contact between the palps and the surface. It is suggested that the stimuli which control the routing of meals to the crop or to the midgut are derived from these types of behaviour.  相似文献   

5.
Summary TheManduca sexta (L.) [Lepidoptera: Sphingidae] andHeliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. Mention of any product in this publication does not imply endorsement by the USDA.  相似文献   

6.
Early insect physiologists recognized the importance of gut physicochemistry, primarily pH, redox potential, and ionic strength, on digestive processes, but studies to date have been primarily restricted to keratin- and wood-feeding insects. Recent investigations show that herbivorous insects have a broad range of gut redox conditions, with pHs ranging from 6.0 to 11.8 and measured redox potentials from −200 to +240 mV. The redox state of the gut is largely dependent on pH, which is well regulated, and the redox activity of ingested material, including plant chemicals, at that pH. Inter- and intraspecific variation in midgut redox conditions appears to be substantial enough to affect digestion via effects on the structure and function of dietary proteins and proteolytic enzymes. The impact of reducing conditions on proteins probably depends on characteristics such as tertiary structure and the number and arrangement of disulfide linkages. In addition to the effects of reducing conditions in dietary proteins, there can be effects on the activities of digestive enzymes, depending on their structure and the nature of their catalytic site. We speculate that phylogenetic and environmental determinants of gut physicochemistry may place constraints on the efficacy of different digestive processes, and may thus influence the evolution of digestive strategies in insects. © 1996 Wiley-Liss, Inc.  相似文献   

7.
In the intestinal tracts of animals, methanogenesis from CO(2) and other C(1) compounds strictly depends on the supply of electron donors by fermenting bacteria, but sources and sinks of reducing equivalents may be spatially separated. Microsensor measurements in the intestinal tract of the omnivorous cockroach Blaberus sp. showed that molecular hydrogen strongly accumulated in the midgut (H(2) partial pressures of 3 to 26 kPa), whereas it was not detectable (<0.1 kPa) in the posterior hindgut. Moreover, living cockroaches emitted large quantities of CH(4) [105 +/- 49 nmol (g of cockroach)(-1) h(-1)] but only traces of H(2). In vitro incubation of isolated gut compartments, however, revealed that the midguts produced considerable amounts of H(2), whereas hindguts emitted only CH(4) [106 +/- 58 and 71 +/- 50 nmol (g of cockroach)(-1) h(-1), respectively]. When ligated midgut and hindgut segments were incubated in the same vials, methane emission increased by 28% over that of isolated hindguts, whereas only traces of H(2) accumulated in the headspace. Radial hydrogen profiles obtained under air enriched with H(2) (20 kPa) identified the hindgut as an efficient sink for externally supplied H(2). A cross-epithelial transfer of hydrogen from the midgut to the hindgut compartment was clearly evidenced by the steep H(2) concentration gradients which developed when ligated fragments of midgut and hindgut were placed on top of each other-a configuration that simulates the situation in vivo. These findings emphasize that it is essential to analyze the compartmentalization of the gut and the spatial organization of its microbiota in order to understand the functional interactions among different microbial populations during digestion.  相似文献   

8.
Regulatory peptides in fruit fly midgut   总被引:1,自引:0,他引:1  
Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.  相似文献   

9.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

10.
11.
Summary The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts ofPeriplaneta americana was fractionated by highperformance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larvalHeliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body ofMamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells. Mention of products in this article does not imply endorsement by the U.S. Department of Agriculture.  相似文献   

12.
Enzyme-induced hemolysis has been shown to occur in the midgut of ticks; however, little is known about the molecular basis for hemolytic activity. We report here the molecular and reverse genetic characterization of a hemolytic midgut serine proteinase, HlSP, recently identified from the ixodid tick Haemaphysalis longicornis. Endogenous HlSP was found in the midgut lumen and its contents, indicating that HlSP is extracellularly secreted. Recombinant H. longicornis serine proteinase (rHlSP) expressed in Escherichia coli showed dose-dependent hemolytic activity towards rabbit erythrocytes, with a maximum hemolysis of 94.5% within 1 h in vitro. Tests of pH dependency showed that rHlSP displayed optimal activity at pH 6.0. In binding assays, rHlSP showed high affinity to band 3, which shares the major erythrocyte membrane proteins. Disruption of HlSP-specific mRNA by RNA interference resulted in inhibition of the degradation of host erythrocyte membranes by endogenous HlSP in the knock-down ticks, indicating that HlSP plays a crucial role in the hemolysis in the midgut of haematophagous ticks. Our results suggest that HlSP may be essential for initiating the proteolytic cascade for the degradation of the host blood-meal.  相似文献   

13.
The present work analyzed the function of lipid transfer particle (LTP) in the process of exporting diacylglycerol from larval Manduca sexta midgut cells to lipophorin. When midgut sacs, which had been prelabeled in vivo with [(3)H]oleic acid, were incubated in vitro with a lipophorin-containing medium, a significant amount of radiolabeled diacylglycerol was transferred to lipophorin. Negligible amounts of diacylglycerol were released into lipophorin-free medium. In contrast, lipid-labeled lipophorin did not transfer diacylglycerol to the midgut sacs. The transfer of diacylglycerol from the midgut sac to lipophorin was blocked by preincubation of midgut sacs with antibody against LTP. Diacylglycerol transfer was restored to control values by the addition of purified LTP to midgut sacs that had been treated with antibody against LTP. Under these conditions the amount of diacylglycerol transferred was a function of the LTP concentration. These are the first results showing that LTP is required to export diacylglycerol from the midgut to lipophorin.  相似文献   

14.
Considering the fact that Prays oleae is one of the most pathogenic insects to the olive tree in the Mediterranean particularly in Tunisia, the mode of action of Cry insecticidal toxins of Bacillus thuringiensis kurstaki in Prays oleae midgut was investigated. The proteolysis of Bacillus thuringiensis δ-endotoxins in the midgut was a key step in determining their potency against Prays oleae. The latter's proteases activated the δ-endotoxins early, yielding stable toxins. The in vitro and in vivo binding of these toxins to Prays oleae larvae midgut was studied immunohistochemically, evidencing a midgut columnar cell vacuolization, microvilli damage, and then a pass of epithelium cell content into the larvae midgut. Moreover, Bacillus thuringiensis toxins were shown to bind to the apical microvilli of the midgut epithelial cells. The in vitro study of the interaction of Prays oleae midgut proteins with biotinylated Bacillus thuringiensis toxins allowed the prediction of four suitable receptor proteins in Prays oleae.  相似文献   

15.
These studies focus on the pupal Aedes aegypti midgut muscularis for the first 26 h following larval-pupal transition. The midgut muscularis of Ae. aegypti pupae during this first half of the pupal stadium is a grid of both circularly and longitudinally oriented muscle bands, arranged in a manner resembling that of the larvae. While many muscle bands exhibit signs of degeneration during the time period studied, not all bands degrade, nor is this degradation simultaneous. Band deterioration involves destruction of internal elements while the muscle fiber plasma membrane remains intact. Deterioration of contractile elements may involve proteosome-like structures and associated enzymes. Many features of the larval muscularis including cruciform cells, bifurcating circular bands, and bifurcating longitudinal bands of muscle are retained during the time period investigated. Neuromuscular junctions along some muscle bands are retained through at least 16 h into the pupal stadium. The selective nature of muscle fiber degradation, coupled with the retention of larval features and neural input, may allow for limited functionality of the muscularis during metamorphosis. Evidence of sexual dimorphism in the midgut muscularis of male and female Ae. aegypti pupae was not observed during the time period studied.  相似文献   

16.
The peritrophic envelope (PE) is an extracellular matrix that is secreted by the midgut epithelium in most arthropods. In addition to protecting the midgut epithelium from abrasive food particles and microbial pathogens, in vitro experiments have suggested that the PE functions as a radical-scavenging antioxidant in caterpillars. This study tested the hypothesis that the PE is a "sacrificial antioxidant" in vivo in caterpillars. As a sacrificial antioxidant, the PE would (1) bind catalytic metal ions, (2) become oxidized itself, and (3) protect the midgut epithelium from oxidative damage. Each of these functions was supported by our results: the PE in Malacosoma disstria adsorbed increased amounts of iron as the concentration of iron was increased in its diet. Iron adsorption by the PE helped protect the midgut epithelium of M. disstria from oxidative damage over a wide range of ingested iron concentrations. Secondly, while the midgut epithelium was protected, protein oxidation in the PE increased 108% when tannic acid was oxidized in the endoperitrophic space. Finally, when the formation of the PE was inhibited by Calcofluor, protein carbonyls in the midgut epithelia of M. disstria and Orgyia leucostigma increased by two- to threefold. We conclude that the PE functions as an effective iron-binding and radical-scavenging antioxidant that protects the midgut epithelia of caterpillars.  相似文献   

17.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices α1 and α2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the α1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

18.
The development of resistance to Bacillus thuringiensis toxic proteins is a growing concern because it could threaten both conventional and gene transfer use of this environmentally safe biological insecticide. The most common mechanism of resistance involves changes in binding affinity of toxin receptors in the insect midgut membrane. This has not been the case in Heliothis virescens. We have investigated changes in midgut proteolytic activity as a possibility to explain the resistance observed in this insect species. We have developed an improvement of known methods to demonstrate proteolytic activity in crude extracts. Using this method we have found differences in the proteolytic activity profile of midgut extracts of a susceptible and a resistant H. virescens strain. We also have studied the in vitro processing of CrylA(b) toxin and protoxin by midgut contents of both strains. SDS-PAGE of the in vitro degradation products showed differences between the strains. The resistant strain degrades protoxin more slowly and processes the active toxin more quickly than the susceptible strain. © 1996 Wiley-Liss, Inc.  相似文献   

19.
This study examined the effect of two natural toxins (a venom from the parasitic wasp Habrobracon hebetor and destruxin A from the entomopathogenic fungus Metarhizium anisopliae), and one pathogen (the entomopathogenic fungus Isaria fumosorosea) on the activity of basic digestive enzymes in the midgut of the cockroach Periplaneta americana. Simultaneously, the role of adipokinetic hormones (AKH) in the digestive processes was evaluated. The results showed that all tested toxins/pathogens elicited stress responses when applied into the cockroach body, as documented by an increase of AKH level in the central nervous system. The venom from H. hebetor showed no effect on digestive enzyme activities in the ceca and midgut in vitro. In addition, infection by I. fumosorosea caused a decrease in activity of all enzymes in the midgut and a variable decrease in activity in the ceca; application of AKHs did not reverse the inhibition. Destruxin A inhibited the activity of all enzymes in the midgut but none in the ceca in vitro; application of AKHs did reverse this inhibition, and no differences between both cockroach AKHs were found. Overall, the results demonstrated the variable effect of the tested toxins/pathogens on the digestive processes of cockroaches as well as the variable ability of AKH to counteract these effects.  相似文献   

20.
Isolated stem cells from the midguts of Manduca sexta and Heliothis virescens can be induced to differentiate in vitro by either of two polypeptide factors. One of the peptides was isolated from culture medium conditioned by differentiating mixed midgut cells; we used high performance liquid chromatographic separation and Edman degradation of the most prominent active peak. It is a polypeptide with 30 amino acid residues (3,244 Da), with the sequence HVGKTPIVGQPSIPGGPVRLCPGRIRYFKI, and is identical to the C-terminal peptide of bovine fetuin. A portion of this molecule (HVGKTPIVGQPSIPGGPVRLCPGRIR) was synthesized and was found to be very active in inducing differentiation of H. virescens midgut stem cells. It was designated Midgut Differentiation Factor 1 (MDF1). Proteolysis of bovine fetuin with chymotrypsin allowed isolation of a pentamer, Midgut Differentiation Factor 2 (MDF2) with the sequence HRAHY corresponding to a portion of the fetuin molecule near MDF1. Synthetic MDF2 was also biologically active in midgut stem cell bioassays. Dose response curves indicate activity in physiological ranges from 10(-14) to 10(-9) M for MDF1 and 10(-15) to 10(-5) M for MDF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号