共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical models proposed to date have been unable to clearly predict biological results from exposure to low-intensity electric and magnetic fields (EMF). Recently a predictive ionic resonance model was proposed by Lednev, based on an earlier atomic spectroscopy theory described by Podgoretskii and Podgoretskii and Khrustalev. The ion parametric resonance (IPR) model developed in this paper corrects mathematical errors in the earlier Lednev model and extends that model to give explicit predictions of biological responses to parallel AC and DC magnetic fields caused by field-induced changes in combinations of ions within the biological system. Distinct response forms predicted by the IPR model depend explicitly on the experimentally controlled variables: magnetic flux densities of the AC and DC magnetic fields (B ac and B dc, respectively); AC frequency (f ac); and, implicitly, charge to mass ratio of target ions. After clarifying the IPR model and extending it to combinations of different resonant ions, this paper proposes a basic set of experiments to test the IPR model directly which do not rely on the choice of a particular specimen or endpoint. While the fundamental bases of the model are supported by a variety of other studies, the IPR model is necessarily heuristic when applied to biological systems, because it is based on the premise that the magnitude and form of magnetic field interactions with unhydrated resonant ions in critical biological structures alter ion-associated biological activities that may in turn be correlated with observable effects in living systems. © 1994 Wiley-Liss, Inc. 相似文献
2.
PC-12 cells primed with nerve growth factor (NGF) were exposed to sinusoidal extremely-low-frequency (ELF) magnetic fields (MFs) selected to test the predictions of the ion parametric resonance (IPR) model under resonance conditions for a single ion (hydrogen). We examined the field effects on the neurite outgrowth (NO) induced by NGF using three different combinations of flux densities of the parallel components of the AC MF (B ac) and the static MF (B dc). The first test examined the NO response in cells exposed to 45 Hz at a B dc of 2.96 μT with resonant conditions for H + according to the model. The B ac values ranged from 0.29 to 4.11 μT root-mean-square (rms). In the second test, the MF effects at off-resonance conditions (i.e., no biologically significant ion at resonance) were examined using the frequency of 45 Hz with a B dc of 1.97 μT and covering a B ac range between 0.79 and 2.05 μT rms. In the third test, the AC frequency was changed to 30 Hz with the subsequent change in B dc to 1.97 μT to tune for H + as in the first test. The B ac values ranged from 0.79 to 2.05 μT rms. After a 23 h incubation and exposure to the MF in the presence of NGF (5 ng/ml), the NO was analyzed using a stereoscopic microscope. The results showed that the NGF stimulation of neurite outgrowth (NSNO) was affected by MF combinations over most of the B ac exposure range generally consistent with the predictions of the IPR model. However, for a distinct range of B ac where the IPR model predicted maximal ionic influence, the observed pattern of NSNO contrasted sharply with those predictions. The symmetry of this response suggests that values of B ac within this distinct range may trigger alternate or additional cellular mechanisms that lead to an apparent lack of response to the MF stimulus. © 1996 Wiley-Liss, Inc. 相似文献
3.
Changes observed in the behavioral response of land snails from exposure to parallel ac and dc magnetic fields demonstrate limited agreement with the predictions of an interaction model proposed by Lednev and the predictions of a recently proposed ion parametric resonance (IPR) model. However, the inadequate number of reported data points, particularly in a critical exposure range, prevents unambiguous application of either the Lednev or the IPR model. © 1995 Wiley-Liss, Inc. 相似文献
4.
A companion paper describes a predictive ion parametric resonance (IPR) model of magnetic field interactions with biological systems based on a selective relation between the ratio of the flux density of the static magnetic field to the AC magnetic field and the charge-to-mass ratio of ions of biological relevance. Previous studies demonstrated that nerve growth factor (NGF)-stimulated neurite outgrowth (NO) in PC-12 cells can be inhibited by exposure to magnetic fields as a function of either magnetic field flux density or AC magnetic field frequency. The present work examines whether the PC-12 cell response to magnetic fields is consistent with the quasiperiodic, resonance-based predictions of the IPR model. We tested changes in each of the experimentally controllable variables [flux densities of the parallel components of the AC magnetic field (B ac) and the static magnetic field (B dc) and the frequency of the AC magnetic field] over a range of exposure conditions sufficient to determine whether the IPR model is applicable. A multiple-coil exposure system independently controlled each of these critical quantities. The perpendicular static magnetic field was controlled to less than 2 mG for all tests. The first set of tests examined the NO response in cells exposed to 45 Hz B ac from 77 to 468 mG(rms) at a B dc of 366 mG. Next, we examined an off-resonance condition using 20 mG B dc with a 45 Hz AC field across a range of B ac between 7.9 and 21 mG(rms). Finally, we changed the AC frequency to 25 Hz, with a corresponding change in B dc to 203 mG (to tune for the same set of ions as in the first test) and a B ac range from 78 to 181 mG(rms). In all cases the observed responses were consistent with predictions of the IPR model. These experimental results are the first to support in detail the validity of the fundamental relationships embodied in the IPR model. © 1994 Wiley-Liss, Inc. 相似文献
5.
The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard. 相似文献
6.
The question whether very weak, low frequency magnetic fields can affect biological matter is still under debate. The theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely weak 60 Hz magnetic fields on the transport of Ca 2+ was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested a newly proposed quantum mechanical model postulates that polarization of hydrogen nuclei can elicit a biological effect. Vesicles were exposed for half an hour at 32 °C and the calcium efflux was studied using radioactive 45Ca 2+ as a tracer. A static magnetic field of 26 µT and time‐varying magnetic fields with a frequency of 60 Hz and amplitudes between 0.6 and 6.3 µT were used. The predictions of the model, proposed by Lednev, that at a frequency of 60 Hz the biological effect under investigation would significantly be altered at the amplitudes of 1.3 and 3.9 µT could not be confirmed. Bioelectromagnetics 33:535–542, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
7.
Bowman et al. used epidemiologic data to test a model in which subjects were classified as being "in-resonance" or "not-in-resonance" for 60-Hz magnetic-field exposures depending on single static magnetic-field measurements at the centers of their bedrooms. A second paper by Swanson concluded that a single static magnetic-field measurement is insufficient to meaningfully characterize a residential environment. The main objective of this study was to investigate exposure-related questions raised by these two papers in two U.S. data sets, one containing single spot measurements of static magnetic fields at two locations in homes located in eight states, and the other repeated spot measurements (seven times during the course of one year) of the static magnetic fields at the centers of bedrooms and family rooms and on the surfaces of beds in 51 single-family homes in two metropolitan areas. Using Bowman's criterion, bedrooms were first classified as being in-resonance or not-in-resonance based on the average of repeated measurements of the static magnetic field measured on the bed where the presumed important exposure actually occurred. Bedrooms were then classified a second time using single spot measurements taken at the centers of bedrooms, centers of family rooms, or on the surfaces of beds, as would be done in the typical epidemiologic study. The kappa statistics characterizing the degree of concordance between the first (on-bed averages) and second (spot measurements) methods of assessing resonance status were 0.44, 0.33, and 0.67, respectively. This level of misclassification could significantly affect the results of studies involving the determination of resonance status. 相似文献
8.
We show, in elementary terms, using for the most part only elementary mathematics, the physical bases for the ion parametric resonance model so as to clarify the assumptions and consequences of the model. The analysis shows why, contrary to earlier conclusions, no combination of weak DC and AC magnetic fields can modify the transition rate to the ground state of excited ions. Although reinterpretations of the biological consequences of the motion of the excited ions circumvent that particular objection to the model, those changes introduce other difficulties. Also, other objections to the mechanism still stand; hence the model cannot account for any purported biological effects of weak extremely low frequency magnetic fields. Bioelectromagnetics 19:181–191, 1998. © 1998 Wiley-Liss, Inc. 相似文献
10.
V. V. Lednev has proposed a mechanism that he suggests would allow very weak magnetic fields, at the cyclotron resonance frequency for Ca2+ ions in the earth's field, to induce biological effects. I show that for four independent reasons no such mechanism can operate. 相似文献
11.
Despite experimental evidence supporting ICR-like interactions in biological systems, to date there is no reasonable theoretical explanation for this phenomenon. The parametric resonance approach introduced by Lednev has enjoyed limited success in predicting the response as a function of the ratio of AC magnetic intensity to that of the DC field, explaining the results in terms of magnetically induced changes in the transition probability of calcium binding states. In the present work, we derive an expression for the velocity of a damped ion with arbitrary q/m under the influence of the Lorentz force. Series solutions to the differential equations reveal transient responses as well as resonance-like terms. One fascinating result is that the expressions for ionic drift velocity include a somewhat similar Bessel function dependence as was previously obtained for the transition probability in parametric resonance. However, in the present work, not only is there an explicit effect due to damping, but the previous Bessel dependence now occurs as a subset of a more general solution, including not only the magnetic field AC/DC ratio as an independent variable, but also the ratio of the cyclotronic frequency Omega to the applied AC frequency omega. In effect, this removes the necessity to explain the ICR interaction as stemming from ion-protein binding sites. We hypothesize that the selectively enhanced drift velocity predicted in this model can explain ICR-like phenomena as resulting from increased interaction probabilities in the vicinity of ion channel gates. 相似文献
12.
We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO 2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc. 相似文献
14.
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (B DC) and ELF magnetic field amplitude (peak) and direction (B AC) set according to the predictions of the PRM for Ca 2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc. 相似文献
15.
The most important but still unresolved problem in bioelectromagnetics is the interaction of weak electromagnetic fields (EMFs) with living cells. Thermal and other types of noise pose restrictions in cell detection of weak signals. As a consequence, some extant experimental results that indicate low-intensity field effects cannot be accounted for, and this renders the results themselves questionable. One way out of this dead end is to search for possible mechanisms of signal amplification. In this paper, we discuss a general mechanism in which a weak signal is amplified by system noise itself. This mechanism was discovered several years ago in physics and is known, in its simplest form, as a stochastic resonance. It was shown that signal amplification may exceed a factor of 1000, which renders existing estimations of EMF thresholds highly speculative. The applicability of the stochastic resonance concept to cells is discussed particularly with respect to the possible role of the cell membrane in the amplification process. © 1994 Wiley-Liss, Inc. 相似文献
16.
An experimental test constraining the intrinsic time scale of a primary physical mechanism that detects extremely-low-frequency (ELF) magnetic fields in biological systems is proposed. The suggested test postulates that a transductive mechanism operating on time scales much shorter than the period of an applied magnetic field cannot obtain any information about the exposure conditions other than the absolute magnitude of the field. By generating field exposures that differ in their vector properties but are equivalent in their time-varying absolute amplitude, it is possible to differentiate between two broad classes of mechanisms: 1) those with intrinsic time scales comparable with or longer than those of the external influence, and 2) those that are much faster than the period of the applied field. The hypothesis assumes an experimental model proven to respond to magnetic fields and sensitive to a change of about a factor of two in one of the field parameters (AC, DC amplitude or frequency). The case of general linearly polarized fields is discussed, and an analytical solution for the case of perpendicular AC/DC fields is given. Bioelectromagnetics 18:244–249, 1997 © 1997 Wiley-Liss, Inc. 相似文献
17.
Previously we reported the results of a series of experimental tests using PC-12 cells to examine the biological effects of prescribed combinations of both nerve growth factor and magnetic fields. Because our assay of the PC-12 cells is based on a binary classification of the cells following treatment, our data might be expected to have a binomial distribution. However, our data consistently show a smaller variability than that predicted by the binomial distribution model. In this paper, we examine some possible reasons for this reduction in variability in our results. © 1996 Wiley-Liss, Inc. 相似文献
18.
There has been considerable recent interest in the question of effects of constant magnetic fields (CMF) on living organisms. The possible alteration of the physiochemical properties of water appears to be one example of such an influence. The dielectric constant, pH, and surface tension of water exposed to CMF action were studied. The results fail to confirm the changes observed by some authors. Controversial opinions on this problem are also summarized and discussed. 相似文献
19.
Goal: This paper reviews recent studies evaluating human subjects for physiologic or neuro-cognitive function adverse effects resulting from exposure to static magnetic fields of magnetic resonance imaging systems. Materials and Methods: The results of three studies are summarized. Two studies evaluated exposure to a maximum of 8 Tesla (T). The first series studied 25 normal human subjects’ sequential vital signs (heart rate, blood pressure, blood oxygenation, core temperature, ECG, respiratory rate) measured at different magnetic field strengths to a maximum of 8 T. A second series of 25 subjects were studied at 0.05 and 8 T (out and in the bore of the magnet), performing 12 different standardized neuro-psychological tests and auditory–motor reaction times. The subjects’ comments were recorded immediately following the study and after a three-month interval. The third study contained 17 subjects, placed near the bore of a 1.5 T magnet, and it used six different cognitive, cognitive–motor, or sensory tests. Results: There were no clinically significant changes in the subjects’ physiologic measurements at 8 T. There was a slight increase in the systolic blood pressure with increasing magnetic field strength. There did not appear to be any adverse effect on the cognitive performance of the subjects at 8 T. A few subjects commented at the time of initial exposure on dizziness, metallic taste in the mouth, or discomfort related to the measurement instruments or the head coil. There were no adverse comments at 3 months. The 1.5 T study had two of the four neuro-behavioral domains exhibiting adverse effects (sensory and cognitive–motor). Conclusions: These studies did not demonstrate any clinically relevant adverse effects on neuro-cognitive testing or vital sign changes. One short-term memory, one sensory, and one cognitive–motor test demonstrated adverse effects, but the significance is not clear. 相似文献
20.
本文旨在通过功能磁共振成像(functional magnetic resonance imaging,fMRI)技术研究正常人进行长时数字记忆信息提取的神经基础。选取22名右利手志愿者进行长时数字记忆任务实验,采用组块设计,记忆任务与对照任务交替进行,同时利用Siemens 1.5T超导型磁共振仪进行fMRI成像,采用SPM99软件进行数据分析,脑功能区定位在Talairach坐标中显示。结果显示被试者在进行长时数字记忆提取任务时,激活最显著的皮层是左侧额中回(Brodmann分区9区,BA9区),另外左额叶内侧回、左额下回、右额下回、扣带回、左顶下小叶、左顶上小叶、右顶上小叶、右颞中回、左枕舌回、左枕中回、右中脑、小脑、右尾状核尾部等结构也有激活,各大脑皮层的激活均呈现明显的左侧半球优势。根据上述结果推论,长时数字记忆由以左侧大脑半球为优势的各脑区共同参与完成,其中左侧额叶外侧面可能是信息提取的重要结构,而其它脑叶及其之间的广泛联系可能在数字信息的加工、处理和存储中起重要作用。 相似文献
|