首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
We investigated the comparative effects of 4 and 60 Hz magnetic fields on pentylenetetrazole (PTZ)-induced seizure in mice. For this study, we measured the latent time to seizure, seizure duration, and lethality induced by PTZ in mice exposed to 4 and 60 Hz magnetic fields (MF) for 30 min. Compared to sham-exposed controls, the latent time to tail twitching and seizure in the 4 Hz MF group was significantly decreased while the latent time to seizure in the 60 Hz MF group was significantly increased. The seizure duration in the 4 Hz MF group was significantly decreased while that in the 60 Hz MF group was significantly increased. More importantly, while the mice exposed to a 60 Hz MF experienced significantly increased lethality after seizure convulsion, those exposed to a 4 Hz MF showed no lethality, with a shortening of the duration of seizure. This beneficial effect of a 4 Hz MF on seizure has the same implication as the anti-oxidative effects of a 4 Hz MF observed in our previous work. The results of our current and previous works indicate that a 4 Hz MF may be used as a therapeutic physical agent for the treatment of oxidative stress-induced diseases, including seizure, with or without chemical drugs.  相似文献   

2.
Two groups of SENCAR mice were treated with a single dose of carcinogen and then, for 23 weeks, with a chemical tumor promoter to induce skin tumors. During this period, one group was coexposed to a 2 mT power frequency (60 Hz) magnetic field, while the other was exposed to sham conditions. Application of the tumor promoter ceased after 23 weeks, but the exposure to sham conditions or magnetic fields continued for an additional 29 weeks. No difference was found between the two groups of mice in terms of the incidence of total tumors (P =.297) or squamous cell carcinomas (SSC) (P =.501). In summary, there was no evidence to support the hypotheses that 60 Hz magnetic fields (MF) can influence the development of either papillomas or SSC under our defined experimental conditions. The overall results add to previous animal studies that find no association between exposure to 60 Hz MF and the incidence of benign or malignant tumors.  相似文献   

3.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The purpose of this study was to examine whether low frequency magnetic field (MF) influences nighttime secretion of hormones, particularly melatonin. Ten healthy males stayed in the experimental room (2.7 m cube with 3 axis Merritt coils) on two separate nights. On one night, subjects were exposed to linearly polarized 50 Hz, 20 microT sinusoidal MF with the third (30%) and the fifth (10%) harmonics and repetitive transient waves (1 burst/s of 1 kHz waves, exponentially attenuated with a duration of 50 ms; initially 100 microT peak), and the other night was for blind control. During the nights (2000-0800 h, including sleeping time, 2300-0700 h), blood samples were collected from the subjects at 1 h intervals for determining the levels of plasma hormones (melatonin, growth hormone (GH), cortisol, prolactin) and at 10 min intervals from 2200 to 0200 h for observing the GH surge induced by sleep. Statistical analyses revealed no significant difference between the 2 nights in the profiles of the four hormones, and the result suggested that extremely low frequency (ELF) or intermediate frequency (IF) MF to which humans are exposed residentially has no acute effect on nighttime secretion of hormones, particularly melatonin.  相似文献   

5.
The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF). Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.  相似文献   

6.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Evidence from epidemiological and animal studies showed that exposure to extremely low frequency magnetic fields (ELF‐MF) could produce deleterious effects on reproduction. In order to investigate the possible mechanism of MF exposure on reproductive effects, first trimester human chorionic villi at 8–10 weeks' gestation were obtained, and trophoblasts were isolated, cultured, and exposed to a 50‐Hz MF for different durations. The human chorionic gonadotropin (hCG) and progesterone in the culture medium was measured by electrochemiluminescence immunoassay. The mRNA levels of apoptosis‐related genes bcl‐2, bax, caspase‐3, p53, and fas in trophoblasts were analyzed using real‐time RT‐PCR. The results showed that exposure of trophoblasts to MF at 0.2 mT for 72 h did not affect secretion of hCG and progesterone from these cells. There was also no significant change in secretion of these hormones when trophoblasts were exposed to a 0.4 mT MF for 48 h. However, MF significantly inhibited hCG and progesterone secretion of trophoblasts after exposure for 72 h at 0.4 mT. Results of apoptosis‐related gene expression analysis showed that, within 72 h of exposure at 0.4 mT, there was no significant difference between MF exposure and control on the expression pattern of each gene. Based on results of the present experiment, it is suggested that exposure to MF for a longer duration (72 h) could inhibit secretion of hCG and progesterone by human first trimester villous trophoblasts, however, the effect might not be related to trophoblast apoptosis. Bioelectromagnetics 31:566–572, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The flow cytometer-based micronucleus assay was used to study the effects on chromosomes in erythroid cells of CBA/Ca mice after extended exposure to 50 Hz magnetic field (MF), 14 microT, peak-to-peak (p-p). The study included two different experiments: (a) mice exposed in utero during 18 days of their prenatal stage, and (b) adult mice exposed for 18 days. In experiment (a) 35 days after exposure was terminated, peripheral blood was drawn from the mice exposed in utero to determine whether the exposure had a genotoxic effect on the pluripotent erythroid stem cells. About 200000 polychromatic erythrocytes (PCE) and 200000 normochromatic erythrocytes (NCE) were analysed from each of 20 exposed mice. The EMF exposure did not significantly change the frequency of micronucleated PCE or NCE in comparison with 20 sham-irradiated mice. There was no difference in the proportion of PCE between exposed and unexposed animals. Similarly, in experiment (b) no differences were seen between EMF exposed and unexposed adult mice when samples of peripheral blood were taken at the end of exposure and analyzed for micronuclei in PCE and NCE. The proportion of PCE was the same in both groups. The results indicate that exposure to EMF does not induce direct or indirect effects on chromosomes in erythroid cells expressed as increased levels of micronucleated erythrocytes of mice. No indications of delayed genetic effects were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号