首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lens of the vertebrate eye was the classic model used to demonstrate the concepts of inductive interactions controlling development. However, it is in the Drosophila model that the greatest progress in understanding molecular mechanisms of eye development have most recently been made. This progress can be attributed to the power of molecular genetics, an approach that was once confined to simpler systems like worms and flies, but is now becoming possible in vertebrates. Thus, the use of transgenic and knock-out gene technology, coupled with the availability of new positional cloning methods, has recently initiated a surge of progress in the mouse genetic model and has also led to the identification of genes involved in human inherited disorders. In addition, gene transfer techniques have opened up opportunities for progress using chick, Xenopus, and other classic developmental systems. Finally, a new vertebrate genetic model, zebrafish, appears very promising for molecular studies. As a result of the opportunities presented by these new approaches, eye development has come into the limelight, hence the timeliness of this focus issue of Developmental Genetics. In this introductory review, we discuss three areas of current work arising through the use of these newer genetic approaches, and pertinent to research articles presented herein. We also touch on related studies reported at the first Keystone Meeting on Ocular Cell and Molecular Biology, recently held in Tamarron Springs, Colorado, January 7–12, 1997. Dev. Genet. 20:175–185, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Changes in the steady state level of retinols, retinaldehydes and retinyl esters in the trans and 11-cis forms and trans retinoic acid were measured in whole chicken eye during development from day 6in ovo to day 3 post-hatch. These retinoids, quantified by different HPLC systems, were detected in this time sequence: trans-retinol and trans-retinyl esters in the first weekin ovo, 11-cis-retinol in the second week. The highest level of 11-cis-retinaldehyde and 11-cis-retinyl esters was reached at the end of developmentin ovo; however, their levels increased further after hatching. The retinoic acid level decreased at the end of the first week, rising again at the end of the second week.The enzyme activities involved in the metabolism of these retinoids-acyl-CoA: retinol acyltransferase, trans-retinol dehydrogenase, 11-cis-retinol dehydrogenase, trans-retinyl ester hydrolase and trans: 11-cis-retinol isomerase were also estimated and they were detectable already in the first week of developmentin ovo.At day 6 of the biosynthesis of retinoic acid by the retinaldehyde dehydrogenase activity from retina cytosol was also shown.  相似文献   

3.
The architecture of the adult arthropod visual system for many decades has contributed important character sets that are useful for reconstructing the phylogenetic relationships within this group. In the current paper we explore whether aspects of eye development can also contribute new arguments to the discussion of arthropod phylogeny. We review the current knowledge on eye formation in Trilobita, Xiphosura, Myriapoda, Hexapoda, and Crustacea. All euarthropod taxa share the motif of a proliferation zone at the side of the developing eye field that contributes new eye elements. Two major variations of this common motif can be distinguished: 1. The “row by row type” of Trilobita, Xiphosura, and Diplopoda. In this type, the proliferation zone at the side of the eye field generates new single, large elements with a high and variable cell number, which are added to the side of the eye and extend rows of existing eye elements. Cell proliferation, differentiation and ommatidial assembly seem to be separated in time but spatially confined within the precursors of the optic units which grow continuously once they are formed (intercalary growth). 2. The “morphogenetic front type” of eye formation in Crustacea + Hexapoda (Tetraconata). In this type, there is a clear temporal and spatial separation of the formation and differentiation processes. Proliferation and the initial steps of pattern formation take place in linear and parallel mitotic and morphogenetic fronts (the mitotic waves and the morphogenetic furrow/transition zone) and numerous but small new elements with a strictly fixed set of cells are added to the eye field. In Tetraconata, once formed, the individual ommatidia do not grow any more. Scutigeromorph chilopods take an intermediate position between these two major types. We suggest that the “row by row type” as seen in Trilobita, Xiphosura and Diplopoda represents the plesiomorphic developmental mode of eye formation from the euarthropod ground pattern whereas the “morphogenetic front type” is apomorphic for the Tetraconata. Our data are discussed with regard to two competing hypotheses on arthropod phylogeny, the “Tracheata” versus “Tetraconata” concept. The modes of eye development in Myriapoda is more parsimonious to explain in the Tetraconata hypothesis so that our data raise the possibility that myriapod eyes may not be secondarily reconstructed insect eyes as the prevailing hypothesis suggests.  相似文献   

4.
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.  相似文献   

5.
The appearance and development of the embryonic and larval eyes of the polyclad turbellarian Stylochus mediterraneus were studied. In the embryo, the left epidermal eye appears first. Subsequently, the right epidermal eye appears, and within hours it sinks into the parenchyma and turns into a cerebral eye. Newly hatched Götte's larvae possess both the left epidermal and the right cerebral eye. Three days after hatching, an incomplete eye appears adjacent to the left epidermal eye. The left cerebral eye then originates from this incomplete eye as it sinks into the parenchyma. This third eye is believed to originate through a process of induction.  相似文献   

6.
7.
Neural crest cells (NCCs) are vertebrate‐specific transient, multipotent, migratory stem cells that play a crucial role in many aspects of embryonic development. These cells emerge from the dorsal neural tube and subsequently migrate to different regions of the body, contributing to the formation of diverse cell lineages and structures, including much of the peripheral nervous system, craniofacial skeleton, smooth muscle, skin pigmentation, and multiple ocular and periocular structures. Indeed, abnormalities in neural crest development cause craniofacial defects and ocular anomalies, such as Axenfeld‐Rieger syndrome and primary congenital glaucoma. Thus, understanding the molecular regulation of neural crest development is important to enhance our knowledge of the basis for congenital eye diseases, reflecting the contributions of these progenitors to multiple cell lineages. Particularly, understanding the underpinnings of neural crest formation will help to discern the complexities of eye development, as these NCCs are involved in every aspect of this process. In this review, we summarize the role of ocular NCCs in eye development, particularly focusing on congenital eye diseases associated with anterior segment defects and the interplay between three prominent molecules, PITX2, CYP1B1, and retinoic acid, which act in concert to specify a population of neural crest‐derived mesenchymal progenitors for migration and differentiation, to give rise to distinct anterior segment tissues. We also describe recent findings implicating this stem cell population in ocular coloboma formation, and introduce recent evidence suggesting the involvement of NCCs in optic fissure closure and vascular development. Birth Defects Research (Part C) 105:87–95, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Leclerc C  Néant I  Moreau M 《Biochimie》2011,93(12):2102-2111
The calcium (Ca2+) signaling pathways have crucial roles in development from fertilization through differentiation to organogenesis. In the nervous system, Ca2+ signals are important regulators for various neuronal functions, including formation and maturation of neuronal circuits and long-term memory. However, Ca2+ signals are mainly involved in the earliest steps of nervous system development including neural induction, differentiation of neural progenitors into neurons, and the neuro-glial switch. This review examines when and how Ca2+ signals are generated during each of these steps with examples taken from in vivo studies in vertebrate embryos and from in vitro assays using embryonic and neural stem cells. Also discussed is the highly specific nature of the Ca2+ signaling pathway and its interaction with the other signaling pathways involved in early neural development.  相似文献   

9.
10.
11.
The tissue interactions between endodermal epithelium and mesenchyme originated from splanchnic mesoderm are essential during the formation of digestive tract. In this review, we introduce a series of works to elucidate the molecular mechanisms of the epithelial-mesenchymal interaction of stomach development in mainly the chicken embryo. We also describe some molecular studies in mouse stomach development.  相似文献   

12.
13.
Microsatellites are DNA-fragments containing short repetitive motifs with 2–10 bp. They are highly variable in most species and distributed throughout the whole genome. It is broadly accepted that their high degree of variability is closely associated with mispairing of DNA-strands during the replication phase, termed slippage, although recombination is also observed. The aim of this study is to demonstrate evidence that non-reciprocal recombination processes changing the total genomic structure are common in microsatellites and flanking regions. We sequenced DNA fragments from birds in which microsatellites are located, and analyzed the structure of the microsatellites and their flanking regions. Additionally, other data and those from literature of three microsatellite regions of primates coding for the Ataxin-2, the Huntingtin and the TATA-box binding protein were analyzed. The structures of seven avian and three primate microsatellites support the hypothesis that non-reciprocal recombination is a common process that may also contribute considerably to the variation at microsatellite loci. We conclude that results of population genetic studies that are analyzed statistically with methods based on stepwise mutation models should be interpreted with caution if no detailed information on the allelic variation of microsatellites is available.  相似文献   

14.
15.
The homeobox gene mbx is involved in eye and tectum development   总被引:4,自引:0,他引:4  
  相似文献   

16.
A study is presented on the expression and activity of complex I, as well as of other complexes of the respiratory chain, in the course of brain development and inherited encephalopathies. Investigations on mouse hippocampal cells show that differentiation of these cells both in vivo and in cell cultures is associated with the expression of a functional complex I, whose activity markedly increases with respect to that of complexes III and IV. Data are presented on genetic defects of complex I in six children with inborn encephalopathy associated with isolated deficiency of the complex. Mutations have been identified in nuclear and mitochondrial genes coding for subunits of the complex. Different mutations were found in the nuclear NDUFS4 gene coding for the 18 kD (IP, AQDQ) subunit of complex I. All the NDUFS4 mutations resulted in impairment of the assembly of a functional complex. The observations presented provide evidence showing a critical role of complex I in differentiation and functional activity of brain cells.  相似文献   

17.
18.
19.
A vertebrate eye was induced via a series of coordinated inductive interactions. Here, we describe a novel in vitro system to induce eye formation at high frequency using Xenopus early gastrulae. The eye formed in vitro is morphologically similar to the normal eye. When the in vitro eye was transplanted into a stage-33 tadpole, the optic nerve was seen extending from the grafted eye to the tectum of the host brain and the in vitro eye graft was retained after metamorphosis. In addition, we transplanted the eye formed in vitro into a tadpole with both eyes removed. The resultant juvenile frogs could perceive brightness using the grafted eye and thereby control their skin color, suggesting that the eye formed in vitro could function normally.  相似文献   

20.
【目的】飞蝗Locusta migratoria(Linnaeus)是我国乃至全世界广泛发生的重要农业害虫,其种群暴发会给农作物造成重大为害和减产。飞蝗种群发生动态受低温及变温的影响,但低温和变温如何作用于胚胎发育和是否诱导胚胎滞育的发生,目前尚不清楚。【方法】本文在对飞蝗胚胎发育特点观察鉴定的基础上,研究了胚胎发育中期恒定低温诱导、诱导后恢复、发育中期变温诱导及发育早期低温诱导等条件对胚胎发育进程的影响。【结果】研究发现,胚胎发育起点温度下非致死温度7.5℃处理促使胚胎发育历期变异增加,而25~30℃高温下胚胎发育整齐。7.5℃处理时间长短对胚胎发育影响不明显,但该低温培育时间长短影响后期常温下的胚胎发育,即7.5℃下长期低温可能促进25℃或30℃下的胚胎的发育。25℃以下变温温度影响胚胎发育进展,但影响胚胎发育的限制因子主要是发育起点以上温度。【结论】因此,温度作为单一环境因子,其特定的低温和变温处理不仅没有诱导胚胎滞育的发生,反而促进后期胚胎在常温下的发育。本研究结果对揭示温度变化对个体发育和种群动态影响及预测飞蝗种群发生有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号