首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Median nerve somatosensory evoked potentials were recorded from 30 normal adults using conventional scalp derivations and an orthogonal bipolar surface electrode montage. This allowed the determination of the spatial orientation of the hypothetical centrally located equivalent dipole derived from the evoked response recorded in 3-dimensional voltage space. The 3-dimensional voltage trajectory describing changes in equivalent dipole orientation and magnitude revealed 4 major apices between 5 and 25 msec, 3 of which corresponded to the traditional P14, N20 and P25 peaks. A fourth apex at 17 msec was not as evident in the conventional recordings and signaled a transition from a vertical P14–N18 generator process to a horizontal N20 generator process. The normal within- and between-subject variability of trajectory apices, segments and planes are described, along with the theoretical and practical implications of this recording technique.  相似文献   

3.
Application of electroacupuncture (EAP) of the segmental points to patients with vertebrogenic algesic syndromes decreased amplitude of N150 and P240 waves recorded from vertex to painful electrocutaneous stimulation in the region innervated by an affected root. As distinct from EAP of segmental point auricular EAP not only decreased the amplitude of late components of evoked potentials (EP), but also increased it, direction of EP changes depending on the character of sensitivity disorders. It is suggested that effect of EAP-evoked EP changes in patients with hypalgesia is determined by two oppositively acting factors: by a decrease of nociceptive afferent impulsation intensity as a result of the antinociceptive system activation and by an increase of the afferent impulsation intensity due to recovery of function of central terminals in primary sensory neurons.  相似文献   

4.
Somatosensory evoked potentials (SSEP) elicited by electrical stimulation of the median nerve were compared in patients with Parkinson's disease and individuals without clinical manifestations of extrapyramidal insufficiency (46 and 55 persons, respectively). The amplitude of the N31 component was found to diminish in Parkinsonian patients while the latency of the P44 component increased significantly. In addition, these parameters depended on the age of the tested subjects; the direction of age-related changes of the N31 and P44 components coincided with those typical of parkinsonism. Our findings seem to suggest that changes in the somatic afferentation caused by Parkinson's disease and aging are of the same type and depend on disturbances in the nigrostriatal dopaminergic system.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 141–145, March–April, 1994.  相似文献   

5.
We report the development of a new method for frequency domain analysis of steady-state somatosensory evoked potentials (SEPs) to amplitude-modulated electrical stimulation, which can be recorded in significantly less time than traditional SEPs. Resampling techniques were used to compare the steady-state SEP to traditional SEP recordings, which are based on signal averaging in the time domain of cortical responses to repetitive transient stimulation and take 1–2 min or more to obtain a satisfactory signal/noise ratio. Median nerves of 3 subjects were stimulated continuously with electrical alternating current at several modulation frequencies from 7 to 41 Hz. Amplitude modulation was used to concentrate the power in higher frequencies, away from the modulation frequency, to reduce the amount of stimulus artifact recorded. Data were tested for signal detectability in the frequency domain using the Tcirc2 statistic. A reliable steady-state response can be recorded from scalp electrodes overlying somatosensory cortex in only a few seconds. In contrast, no signal was statistically discriminable from noise in the transient SEP from as much as 20 s of data. This dramatic time savings accompanying steady-state somatosensory stimulation may prove useful for monitoring in the operating room or intensive care unit.  相似文献   

6.
Human evoked potentials to somatosensory stimuli of non-painful and painful intensity recorded from the vertex have been studied. The indices of variability of N150 and P250 components registered in the same subject as well as indices of interrelationship between spontaneous changes of these components decreased when stimulus intensity increased. A supposition is advanced that the role of general source responsible for generations N150 and P250 components diminished when stimulus intensity increased, accordingly participation of autonomic sources became more prominent.  相似文献   

7.
Ten adult brain-dead patients were evaluated for the presence of clearly defined median nerve short-latency somatosensory evoked potentials (SSEPs). All met clinical criteria recommended by the President's Commission report (1981), had positive apnea tests, and had electrocerebral silent EEGs. P13-P14 and N20 were absent in all scalp-scalp channels, although 3 patients showed P13-P14 in scalp-non-cephalic channels. Of 6 patients showing N13, 3 lacked P13-P14. Our data suggest a characteristic destruction of N20 and rostral P13-P14 generators, with variable rostral-caudal loss of lower generators, SSEPs can provide valuable information about brain-stem activity in the evaluation of suspected brain-dead patients.  相似文献   

8.
Recordings of somatosensory evoked potentials (SEPs) and SEP brain maps of 23 patients with vertebral injury were analyzed. All patients were operated at the Clinic of Military Traumatology and Orthopedics, Military Medical Academy. SEPs (19 sites) were recorded in real time and mapped with "Brain surveyor" neuromapper. Brain lesions were localized before surgery by of MR imaging and CT standard techniques. The results demonstrate that electrical stimulation of peripheral nerves produces a substantially variable SEP pattern. It was shown that SEP formation in more than 60% of recordings suggests a favorable prognosis for rehabilitation, whereas if more than 50% of recording sites are unresponsive, the rehabilitation prognosis is unfavorable. The amplitude of early components (below 60 ms) increases, and that of the late waves reduces.  相似文献   

9.
Experiments have been performed to produce localized thalamic ischaemia in baboons anaesthetised with alpha-chloralose. Somatosensory evoked potentials to median nerve stimulation were recorded in the medial lemniscus. VPL of thalamus and the primary somatosensory cortex. Local blood flow was also recorded by the hydrogen clearance technique in these regions. The early potential recorded in thalamus has been shown to be generated from 3 sources: (i) a positivity generated outside the VPL, (ii) local wavelets, most likely from synaptic activity close to the recording electrode, and (iii) a local overall negativity. The first of these potentials alone remains after thalamic ischaemia. It arises below the level of the thalamus, being very likely generated by the afferent volley in the medial lemniscus, and is seen in the surface-recorded response as the early component P8 (corresponding to P15 in the human).  相似文献   

10.
11.
痛觉诱发电位的研究进展   总被引:4,自引:0,他引:4  
Qi YW  Luo F 《生理科学进展》2004,35(1):19-24
痛觉诱发电位的研究在过去的几十年内取得了重要进展 ,出现了许多用于被试的诱发明确疼痛感的刺激技术 ,并与诱发电位方法学联合应用 ,已经成为脑映像学研究中重要的组成部分。本文从刺激技术、痛觉诱发电位成分分析和偶极子源分析等方面出发 ,讨论了痛觉诱发电位的研究进展  相似文献   

12.
Somatosensory evoked potentials (SEP) to ipsilateral and contralateral median nerve stimulations were recorded from subdural electrode grids over the perirolandic areas in 41 patients with medically refractory focal epilepsies who underwent evaluation for epilepsy surgery. All patients showed clearly defined, high-amplitude contralateral median SEPs. In addition, four patients showed ipsilateral SEPs. Compared with the contralateral SEPs, ipsilateral SEPs were very localized, had a different spatial distribution, were of considerably lower amplitude, had a longer latency (1.2–17.8 ms), did not show an initial negativity, and were markedly attenuated during sleep. Stimulation of the subdural electrodes overlying the sensory hand area was associated with contralateral hand paresthesias, but no ipsilateral hand paresthesias occurred. It was concluded that subdurally recorded cortical SEPs to ipsilateral stimulation of the median nerve (M) reflect unconscious sensory input from the hand possibly serving fast bimanual hand control. The anatomical pathway of these ipsilateral short-latency MSEPs is not yet known. Transcallosal transmission seems unlikely because of the short delay between the ipsilateral and contralateral responses in selected cases. The infrequent occurrence of ipsilateral subdurally recorded SEPs and their low amplitude and limited distribution suggest that they contribute very little to the short-latency ipsilateral median SEPs recorded on the scalp.  相似文献   

13.
14.
Fourteen adult patients undergoing open heart surgery under induced hypothermia had median nerve, short-latency somatosensory evoked potentials (SSEPs) recorded during cooling (from 36°C to 19°C) and subsequent rewarming. Similar data on another group of patients who had brain-stem auditory evoked potentials (BAEPs) were also analyzed. Hypothermia produced increased latencies of the major SSEP and BAEP components and the latencies returned to normal with subsequent warming. The temperature-latency relationship during the cooling phase was significantly different from that during the warming phase. For SSEP components the temperature-latency relationship was linear during cooling and curvilinear during warming, whereas for BAEP it was curvilinear both during cooling and warming. Furthermore, the regression curves were different during the two phases of temperature manipulation, particularly for temperatures below 30°C both for SSEP and BAEP components. At the onset of warming there was an initial exaggerated warming response on the evoked potential (EP) latencies and amplitude of the EP components. The temperature-latency regression curves were uniformly less steep during the warming phase compared to those during cooling. These findings suggest the existence of hysteresis in the relationship between temperature and EP latencies. The latencies at a given temperature below 30°C depend on whether that temperature is reached during cooling or during warming.  相似文献   

15.

Background  

Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain.  相似文献   

16.
In this study we have demonstrated an enhancement of cortically generated wave forms of the somatosensory evoked potential (SEP) following magnetic pulse stimulation of the human brain. Subcortically generated activity was unaltered. The enhancement of SEP amplitude was greatest when the median nerve was stimulated 30–70 msec following magnetic pulse stimulation over the contralateral parietal scalp. We posit that the enhancement of the SEP is the result of synchronization of pyramidal cells in the sensorimotor cortex resulting from the magnetic pulse.  相似文献   

17.
Evoked potentials (EPs) in response to stimuli are recorded from a human scalp contaminated with noise. To improve the signal-to-noise ratio, averaging methods have been widely used for the recorded data. However, when the waveforms of EP for each stimulus are not identical, the average waveform of the EP deteriorates. Variation of the EP waveform to each stimulus itself is important information for the EP. In this paper, a recording method for single somatosensory evoked potential (SEP) waveform is proposed, in which three kinds of band-pass filters were selectively used during three specific time sectors for each interstimulus interval. For the late section of the interval, an EEG waveform prediction method was applied to eliminate contaminated alpha rhythm components. By using the proposed method, we were successful in detecting the single SEP waveform.  相似文献   

18.
19.
The development of the contra- and ipsilateral cortical potential evoked by electrical sciatic nerve stimulation was studied in 77 male albino rats aged 5 to 45 days. A contralateral response was already recorded, as double negativity, in the youngest animals, while an ipsilateral evoked potential was not reliably present until the 10th day. At this time, however, both responses started with an inconstant positive wave and their shape was practically the same. During subsequent development the responses differed only in respect to their dominant component: in the contralateral response, the N1 wave had the highest amplitude for most of the time, while in the ipsilateral response the delayed N2 wave was the largest component. The latent periods of contralateral responses were somewhat shorter than those of ipsilateral evoked potentials. During development we noticed a phase of abrupt shortening of the latent period, which took place before the 15th day in the contralateral response and before the 20th day in the ipsilateral response. We also found a difference in the fatigability of the responses, which was greater in immature rats than in adult animals; in the ipsilateral evoked potential it approached adult values more slowly. The development of the ipsilateral response is thus delayed compared with the development of the contralateral response.  相似文献   

20.
Twenty-two patients (16 affected by parkinsonian syndromes, 6 by other neurological diseases) and 12 age-matched controls were examined. Short-latency somatosensory evoked potentials were recorded from 30 scalp electrodes in the 45–52 msec following separate left and right median nerve stimulation at the wrist. Bit-colour maps were generated on a 4096 pixel matrix via quadratic interpolation. Peak latencies and amplitudes of the parietal, central and frontal components were evaluated. Moreover, the amplitude ratios between parietal and frontal components on the same hemiscalp and between peaks on homologous right and left scalp districts were taken into account. The unique significant difference between parkinsonians and controls was represented by a depressed frontal N30 wave. This peak was absent in 3 and reduced in 7 out of 16 parkinsonians, with an overall abnormality rate of 47% of the examined arms. Average maps pooling data of parkinsonians and controls confirmed the presence of reduced evoked activity for the whole duration of wave N30 on those mid- and parasgittal frontal districts where this peak is maximally represented in normals. A similar abnormality was found in 1 of the 6 non-parkinsonian neurological patients suffering from a meningioma of the falx compressing the left supplementary motor area. Possible pathophysiology of such wave N30 abnormalities in parkinsonians is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号