首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exponentially growing cells of the yeast Saccharomyces cerevisiae were exposed to electromagnetic fields in the frequency range from 41.682 GHz to 41.710 GHz in 2 MHz increments at low power densities (0.5 μW/cm2 and 50 μW/cm2) to observe possible nonthermal effects on the division of this microorganism. The electronic setup was carefully designed and tested to allow precise determination and stability of the electromagnetic field parameters as well as to minimize possible effects of external sources. Two identical test chambers were constructed in one exposure system to perform concurrent control and test experiments at every frequency step under well-controlled exposure conditions. Division of cells was assessed via time-lapse photography. Control experiments showed that the cells were dividing at submaximal rates, ensuring the possibility of observing either an increase or a decrease of the division rate. The data from several independent series of exposure experiments and from control experiments show no consistently significant differences between exposed and unexposed cells. This is in contrast to previous studies claiming nonthermal effects of electromagnetic fields in this frequency range on the division of S. cerevisiae cells. Possible reasons for this difference are discussed. Bioelectromagnetics 18:142–155, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Although exposure to nonionizing electromagnetic radiation has been reported to cause a variety of systemic alterations during embryonic development, there are few reports of the induction of specific physiologic or morphologic changes in the myocardium. This study was designed to examine the effects of microwave radiation on cardiogenesis in Japanese quail embryos exposed during the first eight days of development to 2.45-GHz continuous-wave microwaves at power densities of 5 or 20 mW/cm2. The specific absorption rates were 4.0 and 16.2 mW/g, respectively. The ambient temperature for each exposure was set to maintain the embryonated eggs at 37.5 °C. This did not preclude thermal gradients in the irradiated embryos since microwaves may not be uniformly absorbed. The test exposure levels did not induce changes in either the morphology of the embryonic heart or the ultrastructure of the myocardial cells. Analysis of the enzymatic activities of lactate dehydrogenase, glutamic oxaloacetic transaminase, and creatine phosphokinase failed to reveal any statistically significant differences between the nonexposed controls and those groups exposed to either 5 or 20 mW/cm2. The data indicate that 2.45-GHz microwave radiation at 5 or 20 mW/cm2 has no effect on the measured variables of the Japanese quail myocardium exposed during the first eight days of development.  相似文献   

3.
Female CD 1 mice were exposed from the thirty-fifth day of age for the remainder of their lives to 2.45 GHz, CW-microwave radiation at a power density of 3 or 10 m W/cm2 (SAR = 2.0 or 6.8 W/kg). Exposures took place 1 h/day, 5 day/week in an anechoic chamber at an ambient temperature of 22 °C and a relative humidity of 50%. There were 25 animals in each exposure group, and an equal number of controls were concurrently sham exposed. The average life span of animals exposed at 10 mW/cm2 was significantly shorter than that of sham-exposed controls (572 days vs. 706 days; P = .049; truncation >20%). In contrast, the average lifespan of the animals exposed at 3 mW/cm2 was slightly, but not significantly, longer (738 days) than that of controls (706 days). © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    Regeneration (blastema growth) in Dugesia tigrina was accelerated if prior to transection the planarians were exposed to a weak constant magnetic field (42 μT) combined with an ultraweak alternating magnetic field (40 nT, 3.7 Hz); lesser stimulation was obtained with weak microwaves (100 μW/cm2 at 36 GHz). Field exposure after transection produced only half of the effect (magnetic field) or none at all (microwaves).  相似文献   

    5.
    Microwave‐induced corneal endothelial damage was reported to have a low threshold (2.6 W/kg), and vasoactive ophthalmologic medications lowered the threshold by a factor of 10–0.26 W/kg. In an attempt to confirm these observations, four adult male Rhesus monkeys (Macaca mulatta) under propofol anesthesia were exposed to pulsed microwaves in the far field of a 2.8 GHz signal (1.43 ± 0.06 µs pulse width, 34 Hz pulse repetition frequency, 13.0 mW/cm2 spatial and temporal average, and 464 W/cm2 spatial and temporal peak (291 W/cm2 square wave equivalent) power densities). Corneal‐specific absorption rate was 5.07 W/kg (0.39 W/kg/mW/cm2). The exposure resulted in a 1.0–1.2 °C increase in eyelid temperature. In Experiment I, exposures were 4 h/day, 3 days/week for 3 weeks (nine exposures and 36 h total). In Experiment II, these subjects were pretreated with 0.5% Timolol maleate and 0.005% Xalatan® followed by 3 or 7 4‐h pulsed microwave exposures. Under ketamine–xylazine anesthesia, a non‐contact specular microscope was used to obtain corneal endothelium images, corneal endothelial cell density, and pachymetry at the center and four peripheral areas of the cornea. Ophthalmologic measurements were done before and 7, 30, 90, and 180 days after exposures. Pulsed microwave exposure did not cause alterations in corneal endothelial cell density and corneal thickness with or without ophthalmologic drugs. Therefore, previously reported changes in the cornea exposed to pulsed microwaves were not confirmed at exposure levels that are more than an order of magnitude higher. Bioelectromagnetics 31:324–333, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

    6.
    The present work describes the effect of low level continuous microwaves (2.45 GHz) on developing rat brain. Some 35-day-old Wistar rats were used for this study. The animals were exposed 2 hr/day for 35 days at a power density of 0.34 mW/cm2 [specific absorption rate (SAR), 0.1 W/kg] in a specially made anechoic chamber. After the exposure, the rats were sacrificed and the brain tissue was dissected out and used for various biochemical assays. A significant increase in calcium ion efflux and ornithine decarboxylase (ODC) activity was observed in the exposed group as compared to the control. Correspondingly, a significant decrease in the calcium-dependent protein kinase activity was observed. These results indicate that this type of radiation affects the membrane bound enzymes, which are associated with cell proliferation and differentiation, thereby pointing out its possible role as a tumor promoter.  相似文献   

    7.
    The effects of pulsed microwaves (2.45 GHz, 10 μs, 100 pps, SAR: 81.5 kW/kg peak, 81.5 W/kg average) on membrane input resistance and action potential (AP) interval statistics were studied in spontaneously active ganglion neurons of land snails (Helix aspersa), at strictly constant temperature (20.8±.07°C worst case). Statistical comparison with sham-irradiated neurons revealed a significant increase in the mean input resistance of neurons exposed to pulsed microwaves (P ? .05 ). Pulsed microwaves had no visible effect on mean AP firing rate; this observation was confirmed by analysis of interspike intervals (ISIs). Using an integrator model for spontaneously active neurons, we found the net input current to be more variable in neurons exposed to pulsed microwaves. The mean input current was not affected. The standard deviation of ISIs and the autocorrelation of the input current were marginally affected, but these changes were not consistent across neurons. Although the observed effects were less obvious than those reported in other studies, they represent evidence of a direct interaction between neurons and pulsed microwaves, in the absence of macroscopic temperature changes. The data do not suggest a single, specific mechanism for such interaction. © 1993 Wiley-Liss, Inc.  相似文献   

    8.
    Four groups of C57BL mice were irradiated with 3 GHz pulse (PW) microwaves for 3 hours at incident power densities of 0.1, 0.5, 1 and 5 mW/cm2 respectively. The amount of mitochondria1 marker enzymes succinate dehydrogenase (SDH) and monoamine oxidase (MAO) in the hypothalamus and hippocampus were determined by microspectrophotometry. SDH and MA0 in the irradiated groups (except 0.1 mW/cm2) were significantly lower compared to the control group (p < 0.01). The lowest level occurred in the 5 mW/cm2 group. The threshold level was 0.5 mW/cm2. To compare the effects of PW with continuous wave (CW) exposure, two experimental groups were exosed to 2.45 GHz, using CW; the enzymes were decreased only in the 5 mW/cm2 group. The results show that PW radiation is more effective then CW radiation in decreasing SDH and MA0 levels.  相似文献   

    9.
    Summary The biological effects of microwaves in the hyperfrequency range, 9.4 GHz, 17 GHz, and 70–75 GHz were investigated in bacteria and yeast. At power densities below 60 mW/cm2 and SAR values not exceeding 28 mW/g no significant effects on survival of repair competent and deficient strains were observed inEscherichia coli andSaccharomyces cerevisiae. In addition, microwaves of 17 GHz did not induce mutations inE. coli B/r WP2trp uvr above the spontaneous level, and the induction of nuclear reversions, cytoplasmic petite mutations and mitotic recombination as well as the efficiency of sporulation was not affected in yeast.  相似文献   

    10.
    The effect of low-intensity laser light (He-Ne, 0.2 mW/cm2, 632.8 nm, exposure time 1 min) or centimeter waves (8.15–18 GHz, 1 μW/cm2, exposure time 1 h) on Phospho-SAPK/JNK production in mice lymphocytes was investigated. Normal isolated spleen lymphocytes or cells incubated previously with geldanamycin, an inhibitor of Hsp90, were used in the experiments. Significant stimulation of Phospho-SAPK/JNK production in lymphocytes after treatment with laser light or microwaves has been shown in both cell models. It was proposed that activation of the SAPK/JNK signal pathway plays one of the central roles in cellular stress response to low-power nonionizing radiation.  相似文献   

    11.
    Limits on the exposure to high-peak-power, short-duration microwave pulses have only recently been adopted. Additional data, however, are needed to understand the effects that may be produced by exposure to high-peak-power pulsed microwaves. Four male rhesus monkeys (Macaca mulatta) were trained on an operant task for food pellet reward to investigate the behavioral effects of very high-peak-power 5.62 GHz microwaves. The operant task required monkeys to pull one plastic lever on a variable interval schedule (VI-25 s) and then respond to color signals and pull a second lever to obtain food. The monkeys were conditioned to perform a color discrimination task using one of three colors displayed by a fiber-optic cable. A red signal was the discriminative stimulus for responding on the first lever. A response on the second lever when a green signal was presented (1 s duration) delivered a food pellet. If a response on the second lever was made in the presence of a white signal, a 30-s timeout occurred. While performing the behavioral task, the monkeys were exposed to microwave pulses produced by either a military radar (FPS-26A) operating at 5.62 GHz or the same radar coupled to a Stanford linear energy doubler (SLED) pulse-forming device (ITT-2972) that enhanced peak power by a factor of nine by adding a high power pulse to the radar pulse. The effects of both types of pulses were compared to sham exposure. Peak field power densities tested were 518, 1270, and 2520 W/cm2 for SLED pulses and 56, 128, and 277 W/cm2 for the radar pulses. The microwave pulses (radar or SLED) were delivered at 100 pps (2.8 μs radar pulse duration, ≈ 50 ns SLED pulse duration) for 20 min and produced averaged whole-body SARs of 2,4, or 6 W/kg. Compared to sham exposures, significant alterations of lever responding, reaction time, and earned food pellets occurred during microwave exposure at 4 and 6 W/kg but not 2 W/kg. There were no differences between radar or SLED pulses in producing behavioral effects. ©1994 Wiley-Liss, Inc.
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    Microwave (MW) radiation produced by wireless telecommunications and a number of electrical devices used in household or in healthcare institutions may adversely affects the reproductive pattern. Present study aimed to investigate the protective effects of melatonin (is well known antioxidant that protects DNA, lipids and proteins from free radical damage) against oxidative stress-mediated testicular impairment due to long-term exposure of MWs. For this, 70-day-old male Wistar rats were divided into four groups (n?=?6/group): Sham exposed, Melatonin (Mel) treated (2?mg/kg), 2.45?GHz MWs exposed and MWs?+?Mel treated. Exposure took place in Plexiglas cages for 2?h a day for 45 days where, power density (0.21?mW/cm2) and specific absorption rate (SAR 0.14?W/Kg) were estimated. After the completion of exposure period, rats were sacrificed and various stress related parameters, that is LDH-X (lactate dehydrogenase isoenzyme) activity, xanthine oxidase (XO), ROS (reactive oxygen species), protein carbonyl content, DNA damage and MDA (malondialdehyde) were performed. Result shows that melatonin prevent oxidative damage biochemically by significant increase (p?0.001) in the levels of testicular LDH-X, decreased (p?0.001) levels of MDA and ROS in testis (p?0.01). Meanwhile, it reversed the effects of MWs on XO, protein carbonyl content, sperm count, testosterone level and DNA fragmentation in testicular cells. These results concluded that the melatonin has strong antioxidative potential against MW induced oxidative stress mediated DNA damage in testicular cells.  相似文献   

    13.
    Summary To compare the effects of ketamine anesthesia and mild restraint on microwave-induced thermal and cardiovascular changes, sixteen Fischer 344 rats were irradiated in two states:1) unanesthetized, restrained, and2) ketamine-anesthetized (150 mg/kg, I.M.). Individual animals were exposed in H orientation to far-field continuous-wave 2.8-GHz microwaves. Irradiation was conducted at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14.4 W/kg) to cyclicly increase colonic temperature from 38.5 to 39.5° C. Colonic and subcutaneous temperatures, aortic blood pressure, and heart rate were continuously monitored. The time required for colonic temperature to increase 1° C was significantly longer in the anesthetized state; however, the time to return to baseline was similar under both conditions. Heart rate and blood pressure significantly increased during irradiation in the unanesthetized state, but remained virtually unchanged in the anesthetized state. The subcutaneous temperature increase during exposure was significantly greater in the anesthetized state. The differences in responses of anesthetized and mildly restrained animals should be considered when conducting experiments on thermoregulatory responses to microwave irradiation.  相似文献   

    14.
    Summary An investigation was conducted to determine the effects of relatively low power density microwave exposures on various serum components of the Dutch rabbit. Both continuous wave and pulsed mode exposures at 2.45 GHz were used at power densities of 25, 10 and 5 mW/cm2. Studies of 10 serum components were performed. Additional studies were conducted on changes in sleeping times of pentobarbital-sedated rabbits at various power densities. Gross and histopathological examinations were performed on representative samples of animals.Changes in the blood chemistry of irradiated animals were consistent with a dose-dependent response to a non-specific thermal stress at all power densities used. Observed physiological response, as well as rectal temperature measurements, indicated that the thermoregulatory capability of the rabbits was sufficient to compensate for the thermal burden at 5 and 10 mW/cm2, but could be overridden by a 2 h exposure at 25 mW/cm2. Pathology findings included a mild, repairable nephrosis in animals exposed at a power density of 25 mW/cm2.A further investigation of analeptic effects at power densities varying from 5 mW/cm2 to 50 mW/cm2 resulted in a statistically significant decrease in sleeping times, apparently proportional to power density below 15 mW/cm2.This research was partially supported by the US Army Medical Research and Development Command, Contract No. DADA17-72-C-2144. (The views expressed are those of the authors and do not necessarily reflect those of the Department of the Army)  相似文献   

    15.
    Convection in liquids caused by 53–78 GHz millimeter wave irradiation with incident power density that ranged from 10 μW/cm2 to 1 W/cm2 was studied. Infrared thermography was used as an artifact-free method for recording surface-temperature dynamics during irradiation. It was found that continuous (nonmodulated) waves can produce a relaxation-type temperature oscillation in liquids with a relatively high stability of the period between temperature spikes. The temperature oscillation is due to the repetitive formation and dissipation of a torroidal type of convection vortex. When the vortex became stable during irradiation, we observed a temperature decrease following the initial temperature-rise phase, even though the irradiation was constantly maintained. This result constitutes a new process that can play a significant role in producing microwave bioeffects, including some so-called “nonthermal” effects and some effects that are inversely related to heating. Also, it can be considered as a newly discovered potential artifact in microwave bioeffects studies. © 1996 Wiley-Liss, Inc.  相似文献   

    16.
    《Free radical research》2013,47(5):511-525
    Abstract

    Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm2 and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.  相似文献   

    17.
    Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group.

    Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.  相似文献   


    18.
    The potential mutagenic effect of low power microwave at the DNA sequence level in the mouse genome was evaluated by direct DNA analysis. Animals were exposed to microwave at a power density of 1 mW/cm2 for 2 h/day at a frequency of 2.45 GHz over a period of 120, 150 and 200 days. HinfI digested DNA samples from testis and brain of control and exposed animals were hybridized with a synthetic oligo probe (OAT 36) comprising nine repeats of 5′-GACA-3′. As compared to control animals, band patterns in exposed animals were found to be distinctly altered in the range of 7–8 kb which was also substantiated by densitometric analysis. Though the mechanism of this rearrangement is not yet clear, the results obtained at the present dose are of significance. This dose, which has been set as the safe limit for general public exposure by the Non-Ionizing Radiation Committee of the International Radiation Protection Association, may imply a need for (re)evaluation of the mutagenic potential of microwaves at the prescribed safe limit for the personnel and people who are being exposed.  相似文献   

    19.
    The purpose of this study was to investigate the effects of 2.45 GHz microwave (MW) radiation on dimethylhydrazine (DMH)-induced colon cancer in mice. The subjects were 115 Balb/c mice 4 weeks of age. The animals were divided into group A (control), group B (DMH), group C (DMH + MW), and group D [DMH + 12-O-tetradecanoylphorbol-13-acetate (TPA)]. Radiation (10 mW/cm2) was delivered dorsally with the E field parallel to the mouse's long body axis in an anechoic chamber. Radiations were administered 3 hr daily, 6 days per week, over a period of 5 months. The average SAR was estimated to be 10–12 W/kg. During the course of radiation treatments, DMH was injected once per week. The tumor promoter TPA was administered once per week for 10 weeks, from the third week on, after the initial treatment. The incidence of tumors did not significantly differ between the three test groups (groups B, C, and D; P > 0.25). However, the number of tumors, the size of the tumors, and the incidence of protuberant and infiltrative types in tumor-bearing animals were higher in group D compared to groups B and C (P < 0.05). No difference was found between groups B and C (P > 0.25). The study indicates that 2.45 GHz microwave radiation at 10 mW/cm2 power density did not promote DMH-induced colon cancers in young mice. The study also showed that TPA could accelerate colon tumor production if a tumor was initiated. © 1994 Wiley-Liss, Inc.  相似文献   

    20.
    The effect of millimeter waves (MMWs) on the genome conformational state (GCS) of E. coli AB1157 cells was studied by the method of anomalous viscosity time dependencies (AVTD) in the frequency range of 51.64-51.85 GHz. The 51.755 GHz resonance frequency of the cell reaction to MMWs did not depend on power density (PD) in the range from 10-19 to 3 × 10-3 W/cm2. The half-width of the resonant reaction of cells showed a sigmoid dependence on PD, changing from 3 MHz to 100 MHz. The PD dependence of the half-width had the same shape for different concentrations of exposed cells (4 × 107 and 4 × 108 cells/ml), whereas the magnitude of the 51.755 GHz resonance effect differed significantly and depended on the PD of MMW exposure. Sharp narrowing of the 51.755 GHz resonance in the PD range from 10-4 to 10-7 W/cm2 was followed by an emergence of new resonance frequencies. The PD dependence of the MMW effect at one of these resonance frequencies (51.674 GHz) differed markedly from the corresponding dependence at the 51.755 GHz resonance, the power window occurring in the range from 10-16 to 10-8 W/cm2. The results obtained were explained in the framework of a model of electron-conformational interactions. The frequency-time parameters of this model appeared to be in good agreement with experimental data. © 1996 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号