首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Partial reversion at the bobbed locus of Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster the tandemly arranged repetitive sequences coding for 18S and 28S rRNA are heterogenous at the level of the spacers between units and insertions that interrupt many 28S rRNA genes. This heterogeneity contrasts with the homogeneity of the regions transcribed into 18S and 28S rRNA. Homogenization and evolution of repetitive genes are usually explained by conversion, amplification events or unequal crossovers. In this paper we studied the change in rDNA patterns associated with partial reversion of bobbed mutations. In most cases, no increase in rDNA gene number, but a new repartition of gene types were found.  相似文献   

2.
The chromosomal organization of the ribosomal RNA gene cluster from Saccharomyces cerevisiae was investigated. 18 S rRNA R-loops were formed with unfractionated high molecular weight DNA crosslinked once per 2.7 × 103 bases with trioxsalen and observed in the electron microscope. Almost all the R-loops were found in very long continuous 9.34 ± 0.18 × 103 base repeating units. In addition, molecules were found at a frequency of one to two per genome equivalent of rDNA where several rRNA genes were linked to long stretches of non-rDNA. These results suggest that rDNA is arranged in a single tandem repetitive cluster of 100 to 140 genes flanked on one or both sides by non-rDNA.  相似文献   

3.
4.
In the house cricket,Acheta domesticus, the 110 genes per haploid genome encoding 18S and 28S rRNA are contained within rDNA repeats which are amplified during oogenesis. The 5S rRNA coding sequences of this cricket are found in two sizes of 5S DNA repeating units (measuring 2.1 and 3.0 kb). The 3.0 kb repeats account for more than 90% of the totalAcheta 5S DNA. We have determined the number of cricket 5S rRNA genes by RNA-DNA hybridization analysis: 310 5S DNA repeats/haploid genome clearly approximates the number of 18S and 28S rRNA genes. Because of the relatively low copy number of 5S rRNA genes the possibility of 5S DNA amplification in oocytes ofA. domesticus was also examined. Although amplification of rDNA is readily detectable, amplification of 5S DNA is not observed in oocytes ofA. domesticus. Unlike the genes coding for 18S and 28S rRNA which are localized at a single chromosomal site in the genome ofA. domesticus, the 5S rRNA genes occupy numerous sites distributed along the length of most chromosomes.  相似文献   

5.
6.
Organization of ribosomal RNA gene repeats of the mouse.   总被引:7,自引:3,他引:4       下载免费PDF全文
The organization of the ribosomal RNA (rRNA) genes of the mouse was determined by Southern blot hybridization using cloned rDNA fragments as probes, which could encompass the entire spacer region between two rRNA gene regions. The rRNA genes are organized into tandem repeats of nearly uniform length of about 44 kb. The heterogeneity detected in the nontranscribed spacer appears to be caused by its sequence rather than its length difference. At least three kinds of repetitive sequences are present in the non-transcribed spacer region; two of them are located 13 kb upstream from the 5'-end of 18S RNA gene and the other located 1 to 4 kb downstream from the 3'-end of 28S RNA gene.  相似文献   

7.
《Insect Biochemistry》1990,20(1):1-11
A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been characterized by restriction mapping, Southern-blotting and S1-nuclease analyses. The 18S rRNA coding region measured 1800 bp and contained a conserved Eco RI site near the 3′-end. The 28S rRNA coding region was divided into α and β sequences, comprising 1750 and 2000 bp, respectively, which were separated by a 350 bp sequence that is removed from the rRNA precursor during processing. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region that contained a series of PvuI repeats upstream of the 18S rRNA coding sequence. During development of the mosquito, Aedes aegypti, the rRNA gene copy number per haploid genome increased from about 400 in larvae to about 1200 in adults.  相似文献   

8.
To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a ‘first reserve'' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.  相似文献   

9.
Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species.  相似文献   

10.
11.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

12.
Molecular phylogenetic analyses are mainly based on the small ribosomal RNA subunit (18S rRNA), internal transcribed spacer regions, and other molecular markers. We compared the phylogenetic relationships of Babesia spp. using large subunit ribosomal RNA, i.e., 28S rRNA, and the united 28S + 18S rRNA sequence fragments from 11 isolates of Babesia spp. collected in China. Due to sequence length and variability, the 28S rRNA gene contained more information than the 18S rRNA gene and could be used to elucidate the phlyogenetic relationships of B. motasi, B. major, and B. bovis. Thus, 28S rRNA is another candidate marker that can be used for the phylogenetic analysis of Babesia spp. However, the united fragment (28S + 18S) analysis provided better supported phylogenetic relationships than single genes for Babesia spp. in China.  相似文献   

13.
The arrangement of the coding sequences for the 5 S, 5.8 S, 18 S and 25 S ribosomal RNA from Saccharomyces cerevisiae was analyzed in λ-yeast hybrids containing repeating units of the ribosomal DNA. After mapping of restriction sites, the positions of the coding sequences were determined by hybridization of purified rRNAs to restriction fragments, by R-loop analysis in the electron microscope, and by electrophoresis of S1 nuclease-treated rRNA/rDNA hybrids in alkaline agarose gels. The R-loop method was improved with respect to the length calibration of RNA/DNA duplexes and to the spreading conditions resulting in fully extended 18 S and 25 S rRNA R-loops. The qualitative results are: (1) the 5 S rRNA genes, unlike those in higher eukaryotes, alternate with the genes of the precursor for the 5.8 S, 18 S and 25 S rRNA; (2) the coding sequence for 5.8 S rRNA maps, as in higher eukaryotes, between the 18 S and 25 S rRNA coding sequences. The quantitative results are: (1) the tandemly repeating rDNA units have a constant length of 9060 ± 100 nucleotide pairs with one SstI, two HindIII and, dependent on the strain, six or seven EcoRI sites; (2) the 18 S and 25 S rRNA coding regions consist of 1710 ± 80 and 3360 ± 80 nucleotide pairs, respectively; (3) an 18 S rRNA coding region is separated by a 780 ± 70 nucleotide pairs transcribed spacer from a 25 S rRNA coding region. This is then followed by a 3210 ± 100 nucleotide pairs mainly non-transcribed spacer which contains a 5 S rRNA gene.  相似文献   

14.
The arrangement of the genes and spacers has been analyzed in ribosomal DNA of Xenopus laevis and Xenopus mulleri by heteroduplex mapping and visualization of ribosomal RNA-DNA hybrids. Heterologous reassoeiated molecules show a characteristic pattern in which two perfectly duplexed regions, whose lengths are those predicted by the known lengths of the 18 S and 28 S genes, are separated by a small substitution loop of about 0.23 × 106 daltons and a large region of partial homology which averages 3.24 × 106 daltons. These mismatched regions are entirely consistent with the known sequence divergence previously described (Brown et al., 1972) for the transcribed and non-transcribed spacer regions of the two rDNAs, respectively. Hybrids of X. laevis rDNA with 18 S and 28 S rRNA contain two duplex regions of the expected lengths for the 18 S and 28 S genes separated by 0.49 × 106 daltons of single-strand DNA. This latter value is the length of the transcribed spacer region between the 18 S and 28 S RNAs that has been measured within the 40 S RNA precursor molecule by secondary structure mapping (Wellauer &; Dawid, personal communication). There is also a longer single-strand region separating one 18 S + 28 S gene set from the next; this is considered to be mainly non-transcribed spacer.We conclude that the 18 S and 28 S genes are separated by about 0.5 × 106 daltons of DNA of which about half is homologous in the two Xenopus species. This region is part of the transcribed spacer. In addition, the longer non-transcribed spacer can be seen to have some homology between the two species; the location of this homology is fairly reproducible between molecules and has been carefully documented by contour length measurements.  相似文献   

15.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   

16.
Cercarial dermatitis, also known as swimmer''s itch, is an allergenic skin reaction followed by intense itching caused by schistosome cercariae penetrating human skin. Cercarial dermatitis outbreaks occur globally and are frequently associated with freshwater lakes and are occasionally associated with marine or estuarine waters where birds reside year-round or where migratory birds reside. In this study, a broadly reactive TaqMan assay targeting 18S rRNA gene (ribosomal DNA [rDNA]) sequences that was based on a genetically diverse panel of schistosome isolates representing 13 genera and 20 species (the 18S rDNA TaqMan assay) was developed. A PCR assay was also developed to amplify a 28S rDNA region for subsequent sequencing to identify schistosomes. When applied to surface water samples seeded with Schistosoma mansoni cercariae, the 18S rDNA TaqMan assay enabled detection at a level of 5 S. mansoni cercariae in 100 liters of lake water. The 18S rDNA TaqMan and 28S rDNA PCR sequencing assays were also applied to 100-liter water samples collected from lakes in Nebraska and Wisconsin where there were reported dermatitis outbreaks. Avian schistosome DNA was detected in 11 of 34 lake water samples using the TaqMan assay. Further 28S rDNA sequence analysis of positive samples confirmed the presence of avian schistosome DNA and provided a preliminary identification of the avian schistosomes in 10 of the 11 samples. These data indicate that the broadly schistosome-reactive TaqMan assay can be effective for rapid screening of large-volume water samples for detection of avian schistosomes, thereby facilitating timely response actions to mitigate or prevent dermatitis outbreaks. Additionally, samples positive by the 18S rDNA TaqMan assay can be further assayed using the 28S rDNA sequencing assay to both confirm the presence of schistosomes and contribute to their identification.  相似文献   

17.
18.
19.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

20.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号