共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical models proposed to date have been unable to clearly predict biological results from exposure to low-intensity electric and magnetic fields (EMF). Recently a predictive ionic resonance model was proposed by Lednev, based on an earlier atomic spectroscopy theory described by Podgoretskii and Podgoretskii and Khrustalev. The ion parametric resonance (IPR) model developed in this paper corrects mathematical errors in the earlier Lednev model and extends that model to give explicit predictions of biological responses to parallel AC and DC magnetic fields caused by field-induced changes in combinations of ions within the biological system. Distinct response forms predicted by the IPR model depend explicitly on the experimentally controlled variables: magnetic flux densities of the AC and DC magnetic fields (Bac and Bdc, respectively); AC frequency (fac); and, implicitly, charge to mass ratio of target ions. After clarifying the IPR model and extending it to combinations of different resonant ions, this paper proposes a basic set of experiments to test the IPR model directly which do not rely on the choice of a particular specimen or endpoint. While the fundamental bases of the model are supported by a variety of other studies, the IPR model is necessarily heuristic when applied to biological systems, because it is based on the premise that the magnitude and form of magnetic field interactions with unhydrated resonant ions in critical biological structures alter ion-associated biological activities that may in turn be correlated with observable effects in living systems. © 1994 Wiley-Liss, Inc. 相似文献
2.
Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells
A companion paper describes a predictive ion parametric resonance (IPR) model of magnetic field interactions with biological systems based on a selective relation between the ratio of the flux density of the static magnetic field to the AC magnetic field and the charge-to-mass ratio of ions of biological relevance. Previous studies demonstrated that nerve growth factor (NGF)-stimulated neurite outgrowth (NO) in PC-12 cells can be inhibited by exposure to magnetic fields as a function of either magnetic field flux density or AC magnetic field frequency. The present work examines whether the PC-12 cell response to magnetic fields is consistent with the quasiperiodic, resonance-based predictions of the IPR model. We tested changes in each of the experimentally controllable variables [flux densities of the parallel components of the AC magnetic field (Bac) and the static magnetic field (Bdc) and the frequency of the AC magnetic field] over a range of exposure conditions sufficient to determine whether the IPR model is applicable. A multiple-coil exposure system independently controlled each of these critical quantities. The perpendicular static magnetic field was controlled to less than 2 mG for all tests. The first set of tests examined the NO response in cells exposed to 45 Hz Bac from 77 to 468 mG(rms) at a Bdc of 366 mG. Next, we examined an off-resonance condition using 20 mG Bdc with a 45 Hz AC field across a range of Bac between 7.9 and 21 mG(rms). Finally, we changed the AC frequency to 25 Hz, with a corresponding change in Bdc to 203 mG (to tune for the same set of ions as in the first test) and a Bac range from 78 to 181 mG(rms). In all cases the observed responses were consistent with predictions of the IPR model. These experimental results are the first to support in detail the validity of the fundamental relationships embodied in the IPR model. © 1994 Wiley-Liss, Inc. 相似文献
3.
Previously we reported the results of a series of experimental tests using PC-12 cells to examine the biological effects of prescribed combinations of both nerve growth factor and magnetic fields. Because our assay of the PC-12 cells is based on a binary classification of the cells following treatment, our data might be expected to have a binomial distribution. However, our data consistently show a smaller variability than that predicted by the binomial distribution model. In this paper, we examine some possible reasons for this reduction in variability in our results. © 1996 Wiley-Liss, Inc. 相似文献
4.
We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc. 相似文献
5.
Stefan Engstrm 《Bioelectromagnetics》1996,17(1):58-70
This paper presents a further development of the mechanism for the detection of weak magnetic fields proposed by [Lednev (1991): Bioelectromagnetics 12:71–75]. The fraction of excited oscillator states of an unhydrated ion is studied in a dynamic model driven by the predicted (time-varying) transition probability in the presence of thermal noise and an unspecified excitation mechanism. The main results of Lednev are confirmed. In addition, I conclude that ultraharmonic and ultrasubharmonic resonances may also be observed, provided that the response time of the dynamic system is similar to the period of the oscillating magnetic field. I discuss the time scales involved in the mechanism and present theoretical constraints on these parameters. The crucial requirement for the theory's applicability is that the lifetime of the excited states of the affected ion oscillator exceeds the period of the applied magnetic field. Numerical solutions of the dynamic system are given and are shown to correspond well to theoretical expectations. The main discrepancy between the theories of Lednev and of Blanchard and Blackman [Blanchard and Blackman (1994): Bioelectromagnetics 15:217–238] appears to be due to an inconsistency in the latter paper. The general problem of robust analysis of experimental data is discussed, and I suggest a test of compliance with the Lednev model that is independent of all parameters except for the ratio of oscillating and static field strength (B1/B0) for many resonance conditions and experimental models. © 1996 Wiley-Liss, Inc. 相似文献
6.
Sun WJ Mogadam MK Sommarin M Nittby H Salford LG Persson BR Eberhardt JL 《Bioelectromagnetics》2012,33(7):535-542
The question whether very weak, low frequency magnetic fields can affect biological matter is still under debate. The theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely weak 60 Hz magnetic fields on the transport of Ca2+ was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested a newly proposed quantum mechanical model postulates that polarization of hydrogen nuclei can elicit a biological effect. Vesicles were exposed for half an hour at 32 °C and the calcium efflux was studied using radioactive 45Ca2+ as a tracer. A static magnetic field of 26 µT and time‐varying magnetic fields with a frequency of 60 Hz and amplitudes between 0.6 and 6.3 µT were used. The predictions of the model, proposed by Lednev, that at a frequency of 60 Hz the biological effect under investigation would significantly be altered at the amplitudes of 1.3 and 3.9 µT could not be confirmed. Bioelectromagnetics 33:535–542, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
7.
Bauréus Koch CL Sommarin M Persson BR Salford LG Eberhardt JL 《Bioelectromagnetics》2003,24(6):395-402
The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard. 相似文献
8.
Stefan Engstrm 《Bioelectromagnetics》1997,18(3):244-249
An experimental test constraining the intrinsic time scale of a primary physical mechanism that detects extremely-low-frequency (ELF) magnetic fields in biological systems is proposed. The suggested test postulates that a transductive mechanism operating on time scales much shorter than the period of an applied magnetic field cannot obtain any information about the exposure conditions other than the absolute magnitude of the field. By generating field exposures that differ in their vector properties but are equivalent in their time-varying absolute amplitude, it is possible to differentiate between two broad classes of mechanisms: 1) those with intrinsic time scales comparable with or longer than those of the external influence, and 2) those that are much faster than the period of the applied field. The hypothesis assumes an experimental model proven to respond to magnetic fields and sensitive to a change of about a factor of two in one of the field parameters (AC, DC amplitude or frequency). The case of general linearly polarized fields is discussed, and an analytical solution for the case of perpendicular AC/DC fields is given. Bioelectromagnetics 18:244–249, 1997 © 1997 Wiley-Liss, Inc. 相似文献
9.
Changes observed in the behavioral response of land snails from exposure to parallel ac and dc magnetic fields demonstrate limited agreement with the predictions of an interaction model proposed by Lednev and the predictions of a recently proposed ion parametric resonance (IPR) model. However, the inadequate number of reported data points, particularly in a critical exposure range, prevents unambiguous application of either the Lednev or the IPR model. © 1995 Wiley-Liss, Inc. 相似文献
10.
Ambient 60-Hz magnetic flux density in an urban neighborhood 总被引:1,自引:0,他引:1
A residential neighborhood in Buffalo, NY, was surveyed with a magnetic field meter to evaluate whether or not spot measurements are reliable predictors of the 60-Hz fields at street corners and residences. The results of repeated measurements over 7 days at 33 street corners in this neighborhood indicate that day-to-day variation in power line magnetic fields is negligible (intraclass correlation coefficient = 0.94). Multivariate linear regression analysis of the data indicates that transmission lines and thick, three-phase primary wires near the field measurement site are strong predictors and account for the majority of the ambient magnetic field variance between locations (multiple correlation coefficient squared = 0.60; F ratio = 22.2, P less than .001). Magnetic fields measured at the front sidewalk were highly correlated with fields at the front doorsteps of 45 homes in this neighborhood (gamma = 0.81). These results suggest that ambient power line magnetic field levels at urban residences can be reliably characterized on a one-time site inspection using a hand-held magnetic field meter and a simple wiring classification system. 相似文献
11.
Eduardo Ramirez Jos L. Monteagudo Manuel Garcia-Gracia Jos M. R. Delgado 《Bioelectromagnetics》1983,4(4):315-326
Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields. 相似文献
12.
Whether exposure to static magnetic fields (SMF) for medical applications poses a therapeutic benefit or a health hazard is at the focus of current debate. As a peripheral nerve model for studies of the SMF effects, we have investigated whether exposure of in vitro frog sciatic nerve fibers to moderate-intensity gradient SMF up to 0.7 T modulates membrane excitation and refractory processes. We measured the changes in the amplitudes of the electrically evoked compound action potentials for three groups: a control group without SMF exposure and two exposed groups with continuous inhomogeneous exposure to maximum flux densities (B(max)) of 0.21 and 0.7 T SMF for 6 h. The values of the nerve conduction velocity of C fibers were significantly reduced by B(max) of 0.7 T SMF during the 4- to 6-h exposure period but not by B(max) of 0.21 T SMF during the entire exposure period of 6 h, relative to the unexposed control. From these findings, we speculate that exposure to moderate-intensity gradient SMF may attenuate pain perception because the C fibers are responsible for pain transmission. Although the mechanistic reasons for this decrease have yet to be clarified, SMF could affect the behavior of some types of ion channels associated with C fibers. 相似文献
13.
Effects of static magnetic fields (SMFs) on development of hypertension were investigated using young male, stroke resistant, spontaneously hypertensive rats (SHRs) beginning at 7 weeks of age. SHRs were randomly assigned to two different exposure groups or an unexposed group. The SHRs in the exposure groups were constantly exposed to two different types of external SMFs of 3.0-10.0 mT or 8.0-25.0 mT for 12 weeks. The SMFs were generated from permanent magnetic plates attached to the rat cage. The blood pressure (BP) of each rat was determined at weekly intervals using indirect tail-cuff method. The SMFs suppressed and retarded the development of hypertension in both exposed groups to a statistically significant extent for several weeks, as compared with an unexposed group. The antipressor effects were related to the extent of reduction in plasma levels of angiotensin II and aldosterone in the SHRs. These results suggest that the SMFs of mT intensities with spatial gradients could be attributable to suppression of early BP elevation via hormonal regulatory system. 相似文献
14.
Russel J. Reiter Dun Xian Tan Burkhard Poeggeler Robert Kavet 《Bioelectromagnetics》1998,19(5):318-329
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc. 相似文献
15.
We investigated the interrelated antihypotensive effects of static magnetic fields (SMF) and plasma catecholamine levels in reserpine-induced hypotensive Wistar-Kyoto rats. Seven-week-old male rats were exposed to two different ranges of SMF intensities, 3.0-10 mT (Bmax) or 7.5-25 mT (Bmax) for 12 weeks. Six experimental groups of 10 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham exposed control); (2) 10 mT SMF exposure with ip saline injection (10 mT); (3) 25 mT SMF exposure with ip saline injection (25 mT); (4) no exposure with ip reserpine injection (RES); (5) 10 mT SMF exposure with ip reserpine injection (10 mT + RES); (6) 25 mT SMF exposure with ip reserpine injection (25 mT + RES). Reserpine (5 mg/kg) was administered three times a week for 12 weeks, and 18 h after each injection, arterial blood pressure (BP), heart rate, skin blood flow, plasma nitric oxide metabolites, plasma catecholamine levels, and behavioral parameters of a functional observational battery (FOB) were monitored. The action of reserpine significantly decreased BP, reduced plasma norepinephrine (NE), increased the FOB hunched posture score and decreased the number of rearing events in the RES group, compared with the respective age-matched control group. Exposure to 25 mT, but not 10 mT, for 2-12 weeks significantly prevented the reserpine-induced decrease of BP in the 25 mT + RES group compared with the respective RES group. Moreover, exposure to 25 mT for 5 weeks partially suppressed the reserpine-induced NE reduction, but did not bring about a complete reversal of reserpine effects. NE levels for the 25 mT + RES group for 5 weeks were significantly higher compared with the RES group, but still lower compared with the control group. In addition, the FOB hunched posture score for the 25 mT + RES group was significantly lower and the number of rearing events was higher compared with the RES group, but these behavioral parameters did not revert to control levels. There were no significant differences in any of the physiological or behavioral parameters measured between the 10 mT + RES and RES groups, nor between the two different SMF groups and the control group. These results indicate that 25 mT SMF with spatial gradients significantly suppressed the reserpine-induced hypotension and bradykinesia. The antihypotensive effects of SMF on the reserpine-treated group might be at least partially related to the inhibition of NE depletion. 相似文献
16.
The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc. 相似文献
17.
B Gonet 《Bioelectromagnetics》1985,6(2):169-175
There has been considerable recent interest in the question of effects of constant magnetic fields (CMF) on living organisms. The possible alteration of the physiochemical properties of water appears to be one example of such an influence. The dielectric constant, pH, and surface tension of water exposed to CMF action were studied. The results fail to confirm the changes observed by some authors. Controversial opinions on this problem are also summarized and discussed. 相似文献
18.
Effects on skin blood perfusion of permanent ceramic magnets [0.1 T (1000 G) surface field], individually (disk shaped, 4 cm diameter x 1 cm thick) or in the form of a 11 x 7 in pad ( approximately 28 x 17.8 cm) with an array of 16 rectangular magnets (4.5 x 2.2 cm), were investigated in 16 female volunteers (27.4 +/- 1.7 years, range 21-48 years) using three separate protocols. In protocol A, a disk magnet was placed on the palmar surface of the hand in contact with the thenar eminence (n = 5). In protocol B, the magnet was placed on the hand dorsum overlying the thenar eminence (n = 5). In protocol C, the entire palm and fingers rested on the magnetic pad (n = 6). Magnets were in place for 36 min on one hand, and a sham was in place on the other hand. Blood perfusion was measured on the middle finger dorsum by laser Doppler flowmetry (LDF) and on the index finger by laser Doppler imaging (LDI). Perfusion measurements were simultaneously taken in sham and magnet exposed hands, before and during the entire magnet exposure interval. Magnetic field effects were tested by comparing skin blood perfusion sequences in magnet and sham exposed regions. Results showed no significant changes in either LDF or LDI perfusion at magnet or sham sites during exposure, nor were there any significant differences between sham and magnet sites for any protocol. Measurements of skin temperature at the LDF measurement sites also showed no significant change. It is concluded that in the healthy subjects studied with normal, unstressed circulation, magnets of the type and for the duration used, showed no detectible effect on skin blood perfusion in the anatomical area studied. 相似文献
19.
Effects of a moderate-intensity static magnetic field (SMF) on the early-stage development of endothelial capillary tubule formation were examined during the initial cell growth periods using co-cultured human umbilical vein endothelial cells and human diploid fibroblasts. The co-cultured cells within a well (16 mm in diameter) were exposed to SMF intensity up to 120 mT (Bmax) with the maximum spatial gradient of 21 mT/mm using a disc-shaped permanent magnet (16 mm in diameter and 2.5 mm in height) for up to 10 days. Control exposure was performed without magnet. Some vascular endothelial cells were treated with vascular endothelial growth factor (VEGF)-A (10 ng/ml) to promote the tubule formation every 2-3 days. Four experimental protocols were performed: (1) non-exposure (control); (2) SMF exposure alone; (3) non-exposure with VEGF-A; (4) SMF exposure with VEGF-A. Photomicrographs of tubule cells immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31[) antibody as a pan-endothelial marker, were analyzed after culture at 37 degrees C for 4, 7, and 10 days. The mean values of the area density and the length of tubules (related mainly to arteriogenesis) as well as the number of bifurcations (related mainly to angiogenesis) were determined as parameters of tubule formation and were compared between the groups. After a 10 day incubation, in the peripheral part of the culture wells, SMF alone significantly promoted the tubule formation in terms of the area density and the length of tubules, compared with control group. In the central part of the wells, however, SMF did not cause any significant changes in the parameters of tubule formation. After a 7 day incubation, VEGF-A significantly promoted all the parameters of tubule formation in any part of the wells, compared with control group. With regard to the synergistic effects of SMF and VEGF-A on tubule formation, after a 10 day incubation, SMF significantly promoted the VEGF-A-increased area density and length of tubules in the peripheral part of the wells, compared with the VEGF-A treatment alone. However, SMF did not induce any significant changes in the VEGF-A-increased number of bifurcations in any part of the wells. The tubule cells observed in the wells had elongated, spindle-like shapes, and the direction of cell elongation was random, irrespective of the presence and direction of SMF. These findings suggest that the application of SMF to intact or VEGF-A-stimulated vascular endothelial cells leads mainly to promote or enhance arteriogenesis in the peripheral part of the wells, where the spatial gradient increases relative to the central part. The effects of SMF on the VEGF-A-enhanced tubule formation appear to be synergistic or additive in arteriogenesis but not in angiogenesis. 相似文献
20.
Previously, we found that whole body exposure to static magnetic fields (SMF) at 10 mT (B(max)) and 25 mT (B(max)) for 2-9 weeks suppressed and delayed blood pressure (BP) elevation in young, stroke resistant, spontaneously hypertensive rats (SHR). In this study, we investigated the interrelated antipressor effects of lower field strengths and nitric oxide (NO) metabolites (NO(x) = NO(2)(-) + NO(3)(-)) in SHR. Seven-week-old male rats were exposed to two different ranges of SMF intensity, 0.3-1.0 mT or 1.5-5.0 mT, for 12 weeks. Three experimental groups of 20 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham-exposed control); (2) 1 mT SMF exposure with ip saline injection (1 mT); (3) 5 mT SMF exposure with ip saline injection (5 mT). Arterial BP, heart rate (HR), skin blood flow (SBF), plasma NO metabolites (NO(x)), and plasma catecholamine levels were monitored. SMF at 5 mT, but not 1 mT, significantly suppressed and retarded the early stage development of hypertension for several weeks, compared with the age matched, unexposed (sham exposed) control. Exposure to 5 mT resulted in reduced plasma NO(x) concentrations together with lower levels of angiotensin II and aldosterone in SHR. These results suggest that SMF may suppress and delay BP elevation via the NO pathways and hormonal regulatory systems. 相似文献