首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria from green pea (Pisum sativum) leaves were purified free of peroxisomes and chlorophyll contamination and examined for their biotin content. The bulk of the bound biotin detected in plant mitochondria was shown to be associated with the matrix space to a concentration of about 13 micromolar, and no free biotin was detected. Western blot analysis of mitochondrial polypeptides using horseradish peroxidase-labeled streptavidin revealed a unique biotin-containing polypeptide with a molecular weight of 76,000. This polypeptide was implicated as being the biotinylated subunit of 3-methylcrotonyl-coenzyme A (CoA) carboxylase. Fractionation of pea leaf protoplasts demonstrated that this enzyme activity was located largely in mitochondria. The 3-methylcrotonyl-CoA carboxylase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of mitochondria. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8.3 in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 0.05 millimolar; ATP, 0.16 millimolar; HCO3, 2.2 millimolar. The involvement of 3-methylcrotonyl-CoA carboxylase in the leucine degradation pathway in plant mitochondria is proposed.  相似文献   

2.
It was shown by gel electrophoresis in sodium dodecylsulphate solution that 3-methylcrotonyl-CoA carboxylase from Achromobacter IVS is composed of two different subunits with molecular weights of about 78000 and 96000, respectively. The biotin is bound to the heavier subunit. It was previously found that 3-methylcrotonyl-CoA carboxylase contains four biotin molecules per complex. A complex composed of four of each subunit would thus have a molecular weight of about 700000. This is compatible with the molecular weight of 760000 determined earlier by analytical ultracentrifugation. Both subunits were isolated preparatively. As the subunits, unlike the complex, are very sensitive to oxygen, special precautions had to be taken during isolation. The biotin-containing subunit was isolated by chromatography on DEAE-cellulose in 5 M urea. It no longer catalyzed the overall reaction, yet could still carboxylate free biotin. The biotin-free subunit was separated after dissociation of the enzyme by three-days' dialysis at pH 9.8 under nitrogen. On chromatography over a Sepharose-bound avidin column, the biotin-subunit was fixed and the biotin-free subunit was eluted unretarded. The latter subunit showed no enzymic activity. After the addition of the biotin-containing subunit, overall activity was regenerated. The speed of reassociation is very much enhanced by 3-methylcrotonyl-CoA. It was shown by reassociation experiments under different conditions that probably an initial complex, AxBy is formed, possessing a binding site for 3-methylcrotonyl-CoA. Upon the binding of this substrate the conformation may be changed to a form favourable for reconstitution. Finally, the structures of biotin enzymes from different sources are compared. In the course of evolution there is a tendency toward integration of the different constituent proteins into only one polypeptide chain.  相似文献   

3.
The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1. 4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene of Arabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-B mRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of the Arabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.  相似文献   

4.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   

5.
Two forms of acetyl-CoA carboxylase (ACCase) have been characterized in pea ( Pisum sativum L.) leaves; a heteromeric chloroplast enzyme and a homomeric, presumably cytosolic enzyme. The biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and β-carboxyltransferase (CT) subunits of the plastidial-ACCase have recently been characterized and cloned. To further characterize the carboxyl-transferase, an improved assay for CT was developed and used to follow its partial purification. CT activity co-purifies with ACCase activity during gel permeation chromatography. However, upon anion-exchange chromatography or native PAGE, CT separates from the BC and BCCP subunits of plastidiaI-ACCase and ACCase activity is lost. In addition, it is demonstrated that a previously sequenced pea chloroplast cDNA of unknown function (IEP96) with a predicted molecular weight of 91 kDa encodes the α-CT subunit of the MS-ACCase. Antibodies raised against the first 404 amino acids of IEP96 protein detected a polypeptide with molecular weight of 91 kDa that co-eluted during gel permeation chromatography with plastidial CT and ACCase activities. These antibodies also immunoprecipitated the activities of both ACCase and CT with the concomitant precipitation of the β-CT subunit. Furthermore, antibodies against β-CT immunoprecipitated the IEP96 protein. Two-dimensional PAGE and DEAE purification of ACCase protein demonstrated that the β-CT forms a tight association with the IEP96 protein. Pea leaf was fractionated into soluble and membrane fractions and the α-CT subunit was primarily associated with the membrane fraction. Together, these data demonstrate that IEP96 is the α-CT subunit of pea chloroplast ACCase.  相似文献   

6.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

7.
A multienzyme complex from Euglena, molecular weight about 360,000, containing phosphoenolpyruvate carboxylase, malate dehydrogenase, and acetyl-coenzyme A carboxylase has been dissociated into active constituent enzymes. The respective molecular weights are 183,000, 67,000, and 127,000. The malate dehydrogenase contained in the complex is electrophoretically distinct from other malate dehydrogenase isozymes found in Euglena. The K-m for HCO3minus of the free and complexed acetyl-CoA carboxylase is 4.2-5.4 mM, and the substrate dependency for acetyl-CoA describes a sigmoidal relationship. The HCO3minus K-m for the free phosphoenolpyruvate carboxylase is 7.3-5.4 mM while that for the same enzyme contained in the complex is 0.7-1.3 mM. Both the free and complexed forms ofphosphoenolpyruvate carboxylase have a K-m for phosphoenolpyruvate of 0.9-1.7 mM. The latter enzyme in both the complex and free forms is stimulated by NADH, acetyl-CoA, and ATP. In the free phosphoenolpyruvate carboxylase, the stimulation passes through a maximum depending on effector concentration. The effect of NADH is to increase V-max while K-m values remain unmodified.  相似文献   

8.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

9.
Alban C  Jullien J  Job D  Douce R 《Plant physiology》1995,109(3):927-935
Pea (Pisum sativum L.) leaf acetyl-coenzyme A carboxylase (ACCase) exists as two structurally different forms: a major, chloroplastic, dissociable form and a minor, multifunctional enzyme form located in the leaf epidermis. The dissociable form is able to carboxylate free D-biotin as an alternate substrate in place of the natural substrate, biotin carboxyl carrier protein. Here we report the purification of the biotin carboxylase component of the chloroplastic pea leaf ACCase. The purified enzyme, free from carboxyltransferase activity, is composed of two firmly bound polypeptides, one of which (38 kD) is biotinylated. In contrast to bacterial biotin carboxylase, which retains full activity upon removal of the biotin carboxyl carrier component, attempts to dissociate the two subunits of the plant complex led to a complete loss of biotin carboxylase activity. Steady-state kinetic studies of the biotin carboxylase reaction reveal that addition of all substrates on the enzyme is sequential and that no product release is possible until all three substrates (MgATP, D-biotin, bicarbonate) are bound to the enzyme and all chemical processes at the active site are completed. In agreement with this mechanism, bicarbonate-dependent ATP hydrolysis by the enzyme is found to be strictly dependent on the presence of exogenous D-biotin in the reaction medium.  相似文献   

10.
We have purified propionyl-CoA carboxylase from normal, postmortem human liver to homogeneity. The isolation procedure, which provided an approximately 3000-fold purification and an overall yield of 26%, employed initial centrifugation of a cetyltrimethylammonium bromide-treated homogenate, followed by sequential chromatographic separations using DEAE-cellulose, Blue Sepharose, and Bio-Gel A-1.5m. The native enzyme has a molecular weight of approximately 540,000 and is composed of nonidentical subunits (alpha and beta) of Mr = 72,000 and 56,000, respectively. When studied with analytical isoelectrofocusing techniques, it focuses as a single peak at pH 5.5. Each mole of native enzyme contains 4 mol of bound biotin, virtually all of which is found with the larger (alpha) subunit. The apparent Km values for ATP, propionyl-CoA, and bicarbonate are 0.08 mM, 0.29 mM, and 3.0 mM, respectively. The enzyme also catalyzes the carboxylation of acetyl-CoA and butyryl-CoA to a limited degree, but not that of crotonyl-CoA. Propionyl-CoA carboxylase is quite stable over a temperature range from -50--37 degrees C and over a pH range from 6.2 to 8.4. It has a broad pH optimum from pH 7.2 to 8.8. Limited proteolysis with trypsin results in slow, time-dependent deactivation of the enzyme with preferential cleavage of the smaller subunit. Antiserum prepared against the native enzyme is shown to be monospecific by immunodiffusion and immunoelectrophoresis.  相似文献   

11.
Acetyl-CoA carboxylase is the sole biotin enzyme previously reported in plants. Western analysis with 125I-streptavidin of proteins extracted from carrot somatic embryos visualized six biotin-containing polypeptides, the relative molecular masses of which are 210,000, 140,000, 73,000, 50,000, 39,000, and 34,000. This multiplicity of the biotin-containing polypeptides can be partly explained by the discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase, and pyruvate carboxylase in extracts of somatic carrot embryos, biotin enzymes previously unknown in the plant kingdom. These biotin enzymes seem to be widely distributed in the plant kingdom.  相似文献   

12.
When we incubated biotin carboxylase from Escherichia coli with ATP in absence of biotin we observed HCO3- -dependent ATP hydrolysis, which was activated by 10% ethanol in the same proportion as the activity of D-biotin carboxylation assayed in the presence of biotin. The two activities exhibited identical heat stability and were protected equally by glycerol; both required Mg2+ and K+ and showed similar dependency on the concentration of ATP. Biotin assay excluded potential contamination by traces of biotin as a cause of the observed ATP hydrolysis, and this was confirmed by the findings that carboxybiotin did not accumulate and that avidin was uninhibitory. Therefore we concluded that this HCO3- -dependent ATPase was genuinely a partial activity of biotin carboxylase. This partial activity supports a sequential mechanism for enzymatic carboxylation of biotin in which HCO3- is activated by ATP in a first step. It is consistent with the initial formation of the carbonic-phosphoric anhydride (HOCO2PO3(2-)), and it does not agree with models where biotin is phosphorylated by ATP prior to reaction with HCO3-. It appears that enzymes that use HCO3- for carboxylation, including biotin-dependent carboxylases, phosphoenolpyruvate carboxylase, and carbamoyl phosphate synthetase, activate HCO3- by a common mechanism involving the initial formation of the carbonic-phosphoric anhydride.  相似文献   

13.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

14.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

15.
The pyruvate carboxylase of Pseudonomas fluorescens was purified 160-fold from cells grown on glucose at 20 degrees C. The activity of this purified enzyme was not affected by acetyl-coenzyme A or L-aspartate, but was strongly inhibited by ADP, which was competitive towards ATP. Pyruvate gave a broken double reciprocal plot, from which two apparent Km values could be determined, namely 0-08 and 0-21 mM, from the lower and the higher concentration ranges, respectively. The apparent Km for HCO3 at pH 6-9, in the presence of the manganese ATP ion (MnATP2-), was 3-1 mM. The enzyme reaction had an optimum pH value of 7-1 or 9-0 depending on the use of MnATP2- or MgATP2-, respectively, as substrate. Free Mg2+ was an activator at pH values below 9-0. The enzyme was strongly activated by monovalent cations; NH4+ and K+ were the better activators, with apparent Ka values of 0-7 and 1-6 mM, respectively. Partially purified enzymes from cells grown on glucose at 1 or 20 degrees C had the same properties, including the thermal stability. In both cases 50% of the enzyme activity was lost after pre-incubation for 10 min at 46 degrees C. The molecular weight was estimated to be about 300000 daltons by gel filtration on Sephadex G-200. The regulatory properties and molecular weight are thus similar to those determined for the pyruvate carboxylases from Pseudomonas citronellolis and Azotobacter vinelandii.  相似文献   

16.
D-Ribulose 1,5-bisphosphate (RuBP) carboxylase has been purified from the photosynthetic extreme halophile Ectothiorhodospira halophila. Despite a growth requirement for almost saturating sodium chloride in the medium, both crude and homogeneous preparations of RuBP carboxylase obtained from this organism were inhibited by salts. Sedimentation equilibrium analyses showed the enzyme to be large (molecular weight: 601,000). The protein was composed of two types of polypeptide chains of 56,000 and of 18,000 daltons. The small subunit appeared to be considerably larger than the small subunit obtained from the RuBP carboxylase isolated from Chromatium, an organism related to E. halophila. Amino acid analyses of hydrolysates of both E. halophilia and Chromatium RuBP carboxylases were very similar. Initial velocity experiments showed that the E. halophila RuBP carboxylase had a Km for ribulose diphosphate of 0.07 mM and a Km for HCO3- of 10 mM. Moreover, 6-phospho-D-gluconate was found to markedly inhibit the E. halophila carboxylase; a Ki for phosphogluconate of 0.14 mM was determined.  相似文献   

17.
The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase   总被引:16,自引:6,他引:10       下载免费PDF全文
ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure (JR Sowokinos, J Preiss [1982] Plant Physiol 69: 1459-1466) together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.  相似文献   

18.
The activities of four biotin enzymes, acetyl-coenzyme A (CoA) carboxylase, 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase, and the accumulation of six biotin-containing polypeptides were determined during development of somatic embryos of carrot (Daucus carota). Acetyl-CoA carboxylase activity increased more than sevenfold, whereas the activities of 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase were relatively unaltered. An increase also occurred in the accumulation of three of the biotin-containing polypeptides (molecular masses of 220, 62, and 34 kilodaltons). Of these, the most dramatic change was in the accumulation of the 62-kilodalton biotin-containing polypeptide, which increased by at least 50-fold as embryogenic cell clusters developed into torpedo embryos.  相似文献   

19.
The pyruvate carboxylase (PYC) of the hyperthermophilic, strictly hydrogenotrophic, autotrophic and marine methanarchaeon Methanococcus jannaschii was purified to homogeneity. Optimal activity was at pH 8.5, > or = 80 degrees C, and a KCl concentration of 0.175 M. This enzyme is the most thermophilic PYC so far studied. Unlike the Methanobacterium thermoautotrophicum enzyme, Mc. jannaschii PYC was expressed in cells grown without an external source of biotin and in the purified form was stable during storage at 4, -20 and -80 degrees C. However, it was rapidly inactivated at 80 degrees C. The enzyme was insensitive to aspartate and glutamate, mildly inhibited by alpha-ketoglutarate, and was strongly inhibited by ATP and ADP (apparent Km, for ATP, 0.374 +/- 0.039 mM; apparent Ki for ATP, 5.34 +/- 2.14 mM; Ki for ADP, 0.89 +/- 0.18 mM). It was also strongly inhibited when the Mg2+ concentration in the assay exceeded that of ATP. Thus, this stable PYC could serve as a model for mechanistic studies on archaeal PYCs. It was apparently an alpha4beta4-type PYC composed of a non-biotinylated 55.5-kDa subunit (PYCA) and a 64.2-kDa biotinylated subunit (PYCB). The determined NH2-terminal sequences for these subunits provided additional support for our earlier proposal to rename the ORFs MJ1229 and MJ1231 in the NCBI Mc. jannaschii genome sequence database as PYCA and PYCB, respectively; even very recently, these have been misidentified as a subunit of acetyl-CoA carbxoylase (AccC) and the alpha-subunit of ion-pumping oxaloacetate decarboxylase (OADalpha), respectively.  相似文献   

20.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (kmod) were 0.11 and 0.26 min-1 respectively. oATP completely inhibited the [14C]ADP in equilibrium ATP exchange and did not effect the [14C]acetyl-CoA in equilibrium malonyl-CoA exchange. Incorporation of approximately 1 equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to 3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA carboxylase by oATP. It was shown that the reagent apparently interacted selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号