首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pectinolytic enzyme of Selenomonas ruminantium   总被引:1,自引:0,他引:1  
A cell-bound pectinolytic enzyme was isolated from cells of Selenomonas ruminantium and purified about 360-fold. The optimum pH and temperature for enzyme activity was 7.0 and 40°. The enzyme degraded polymeric substrates by hydrolysis of digalacturonic acid units from the non-reducing end; the best substrate was nona-galacturonic acid. Unsaturated trigalacturonate was also degraded, but 30% slower than the saturated analogue. The enzyme was classified as a poly (1,4-aP-D-galactosiduronate) digalacturono-hydrolase; EC 3.2.1.82. Another enzyme, hydrolysing digalacturonic acid to monomers, was also produced in a very small amount by this organism.  相似文献   

2.
An intracellular pectinolytic enzyme was isolated from a cell extract of Butyrivibrio fibrisolvens and purified. The optimum pH for enzyme activity was 5.6. The enzyme preferentially degraded de-esterified substrates by hydrolysis of monosaccharide units from the non-reducing end; the only product of degradation was D-galacturonic acid. Values of Km and Vmax for oligo- and polygalacturonates indicated that the best substrate was digalacturonic acid; oligogalacturonates containing either a saturated or a delta 4,5-unsaturated non-reducing end were both degraded. The enzyme was classified as an exo-D-galacturonanase [poly(1,4-alpha-D-galacturonide) galacturonohydrolase (EC 3.2.1.67)].  相似文献   

3.
A saccharifying pectate trans-eliminase was found in the cells of Erwinia aroideae. This enzyme differs from known pectate trans-eliminase in the next two points. It degrades pectic acid liberating 4,5-unsaturated digalacturonic acid from the chain end of the molecule. It does not require calcium ion.

Some properties of 4,5-unsaturated digalacturonic acid, the main product of the saccharifying pectate trans-elimination, were also described in this paper.  相似文献   

4.
1. A second exopolygalacturonase was separated from a mycelial extract of Aspergillus niger with a 265-fold purification and a recovery of 1%. 2. Unlike the first exopolygalacturonase this enzyme showed no requirement for metal activators, nor was it inhibited by chelating agents. 3. The two exopolygalacturonases were also distinguished by their pH optima and stability. 4. The enzyme progressively removed the terminal galacturonic residues from alpha-(1-->4)-linked galacturonide chains, converting digalacturonic acid, trigalacturonic acid and tetragalacturonic acid into galacturonic acid. Galacturonic acid was also released from pectic acid but complete digestion was not achieved.  相似文献   

5.
Pectic enzymes in the supernatants of Erwinia chrysanthemi cultures in late-logarithmic-phase growth on D-galacturonan were resolved into three components: two pectate lyase isozymes and an exo-poly-alpha-D-galacturonosidase previously unreported in this organism. The hydrolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, preparative electrofocusing in Ultrodex gel, and gel filtration through Ultrogel AcA54. The enzyme had a specific activity of 591 mumol/min per mg of protein, a pI of 8.3, a molecular weight of 67,000, a pH optimum of 6.0, and a Km of 0.05 mM for D-galacturonan. Analyses of reaction mixtures by paper chromatography revealed that the enzyme released only digalacturonic acid from D-galacturonan. The action of the hydrolytic enzyme on D-galacturonan labeled at the nonreducing end by partial digestion with pectate lyase revealed that it rapidly released 4,5-unsaturated digalacturonic acid from 4,5-unsaturated pectic polymers. The production of extracellular exo-poly-alpha-D-galacturonosidase was coordinately regulated with pectate lyase production. The action patterns of the two enzymes appeared complementary in the degradation of pectic polymers to disaccharides that stimulated pectic enzyme production and supported bacterial growth.  相似文献   

6.
A D-galacturonanase (EC 3.2.1.67) catalyzing the degradation of D-galacturonans by terminal action pattern was purified from a culture filtrate of Aspergillus niger by a procedure including the salting-out with ammonium sulfate, precipitation by ethanol, chromatography on DEAE-cellulose, and gel chromatography on Sephadex G-100. The obtained preparation was slightly contaminated by an enzymically inactive protein fraction. Maximum activity and stability of the enzyme was observed at pH 5.2. The enzyme degrades digalacturonic acid, p-nitrophenyl-alpha-D-galactopyranuronide, as well as oligogalacturonides containing at the nonreducing end 4-deoxy-L-threo-hexa-4-enopyranosyluronate. It differs from all A. niger enzymes so far described which degrade D-galaturonans by the terminal action pattern, in not clearly preferring low-molecular substrates. It is therefore classified as an exo-D-galacturonanase.  相似文献   

7.
Polygalacturonic acid trans-eliminase of Xanthomonas campestris   总被引:1,自引:0,他引:1  
Polygalacturonic acid trans-eliminase from the culture fluid of Xanthomonas campestris was purified 66-fold by acetone precipitation, citrate extraction and chromatography on diethylaminoethyl- and carboxymethyl-cellulose. The optimum pH is 9·5 in glycine–sodium hydroxide buffer. Up to 1mm-calcium chloride brings about a remarkable stimulation of the enzyme activity and, at this concentration, no other cations promote or inhibit enzyme action except Ba2+ ions, which cause complete inhibition. The enzyme degrades polygalacturonic acid in a random manner; it does not act upon polygalacturonate methyl glycoside, although it can cleave partially (68%) esterified pectin. The end products from polygalacturonic acid at 46% breakdown are unsaturated di- and tri-galacturonic acids, in addition to saturated mono-, di- and tri-galacturonic acids. Pentagalacturonic acid is split preferentially into saturated dimer plus unsaturated trimer, or into saturated trimer plus unsaturated dimer; at a lower rate, it is also split into monomer and unsaturated tetramer. Unsaturated pentamer is split into unsaturated dimer plus unsaturated trimer. Tetragalacturonic acid is split some-what preferentially at the central bond to form dimer and unsaturated dimer, but it is also split into monomer and unsaturated trimer. Unsaturated tetramer is split only at the central bond to yield only unsaturated dimer. Trigalacturonic acid is split into monomer and unsaturated dimer. Unsaturated trimer is cleaved into saturated dimer and probably 4-deoxy-l-5-threo-hexoseulose uronic acid, which has not yet been directly identified. Neither saturated nor unsaturated digalacturonic acid is attacked. The unsaturated digalacturonic acid was isolated and proved to be O-(4-deoxy-β-l-5-threo-hexopyranos-4-enyluronic acid)-(1→4)-d-galacturonic acid.  相似文献   

8.
Uptake of [14C]galacturonic acid in Erwinia chrysanthemi was found to be stimulated during growth on pectin and its degradation products, saturated digalacturonic acid and galacturonic acid. Cells isolated from macerated potato tissue also showed increased levels of uptake activity for this molecule compared with those showed by glycerol-grown cells. Uptake was found to be an active process, and it displayed saturation kinetics. An Escherichia coli galacturonic acid transport mutant harboring the E. chrysanthemi exuT gene(s) for galacturonic acid uptake was able to transport galacturonic acid but unable to take up the dimer [3H]digalacturonic acid.  相似文献   

9.
The laboratory strain of S. cerevisiae, IM1-8b, showed pectolytic activity in the presence of either glucose, fructose, or sucrose as the carbon source, but not with galactose. The enzyme activity was rapidly lost with shaking. The optimum pH and temperature for activity were 4.5 and 45°C, respectively. The enzyme was an endopolygalacturonase, since it preferentially hydrolysed pectate over pectin and decreased the viscosity of a 5% polygalacturonic solution by about 30% in 30min producing oligogalacturonic acid and digalacturonic acid as end-products.  相似文献   

10.
1. An exopolygalacturonase was separated from a mycelial extract of Aspergillus niger with a 290-fold purification and a recovery of 8·6%. 2. The enzyme displayed its full activity only in the presence of Hg2+ ions; KA for mercuric chloride was about 6×10−8m. 3. The mercury-activated enzyme progressively removed the terminal galacturonic acid residues from α-(1→4)-linked galacturonide chains and converted digalacturonic acid, trigalacturonic acid, tetragalacturonic acid and pectic acid into galacturonic acid.  相似文献   

11.
Cultures of Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner have been induced to secrete an endopolygalacturonase (polygalacturonide glycanohydrolase EC3.2. 1.15). This enzyme has been brought to a high state of purity by ion exchange, gel filtration, and agarose affinity chromatography. The enzyme has optimal activity at pH 5, has an apparent molecular weight as determined by gel filtration of about 70,000, and prefers polygalacturonic acid to pectin as its substrate. The enzyme, while hydrolyzing only 1% of the glycosidic bonds, reduces the viscosity of a polygalacturonic solution by 50%. Nevertheless, the initial as well as the final products of polygalacturonic acid hydrolysis are predominantly tri- and digalacturonic acid and, to a lesser extent, monogalacturonic acid. The purified enzyme catalyzes the removal of about 80% of the galacturonic acid residues of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus) as well as from the walls isolated from 8-day-old Red Kidney bean (Phaseolus vulgaris) hypocotyls.  相似文献   

12.
Exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans were assayed simultaneously in the same reaction mixture which contained a highly esterified pectin, polymethyl polygalacturonic acid methyl glycoside. Lyase is specific for unesterified galacturonide residues and cannot degrade this substrate in the absence of the esterase. The rate for esterase was twice the rate for lyase throughout the entire course of the combined reaction. Thus, the molar ratio of the two enzyme activities was the same since the product of the lyase is an unsaturated digalacturonic acid containing two free carboxyl groups. Since clostridial exopolygalacturonate lyase is known to degrade polygalacturonate in a linear manner beginning from the reducing ends of polygalacturonate chains, it was apparent that clostridial pectinesterase must hydrolyze methyl groups in highly esterified pectins with an action pattern similar to that of the lyase. Otherwise it would be impossible for the two enzyme rates to have corresponded on the basis of a 2:1 ratio.  相似文献   

13.
An exopolygalacturonase (exo-PGase; EC 3.2.1.82) was found in the culture broth of a Bacillus isolate. The gene encoding the exo-PGase, pehK, was cloned by polymerase chain reaction using mixed primers designed from N-terminal and internal amino acid (aa) sequences of the enzyme (PehK). The determined nucleotide (nt) sequence of pehK revealed a 2940 bp open reading frame (980 aa) that encoded a putative signal sequence (27 aa) and a mature protein (953 aa; 103810 Da). The recombinant enzyme was purified to homogeneity from a culture broth of Bacillus subtilis harboring a pehK-containing plasmid. It had a molecular mass of 105 kDa and a pI value of 5.0. The maximum activity was observed at pH 8 and 55 degrees C in Tris-HCl buffer. The degradation products from polygalacturonic or oligogalacturonic acids were digalacturonic acid, like the exo-PGases, PehX of Erwinia chrysanthemi and PehB of Ralstonia solanacearum. The deduced aa sequence of PehK exhibited moderate homology to those of PehX and PehB with approx. 30% identity for both. High homology was observed in a suitably aligned internal region of the three enzymes (65% identity), and some of the conserved aa residues appeared to form the catalytic core of the enzymes.  相似文献   

14.
DNase I in human urine was purified to an electrophoretically homogeneous state by column chromatographies on DEAE-lignocellulose, hydroxyapatite, DEAE-cellulose, Sephadex G-75 and elastin-celite. The purified enzyme was immunologically identical with human pancreatic DNase I, but not with bovine pancreatic DNase I. The molecular weight and isoelectric point of the enzyme were estimated to be 4.1 X 10(4) and 3.6, respectively. The amino acid analysis revealed that 1 mol of the enzyme contained 8 mol of half-cystine. The N-terminal amino acid was identified as leucine by the dansyl chloride method. The enzyme was active in the presence of Mg2+, Co2+, or Mn2+, The optimum pH was around 6.5. The enzyme was stable in the pH range from 5.0 to 9.0 and at temperatures lower than 45 degrees C. The rate of hydrolysis of native DNA by the enzyme was twice as fast as that observed with heat-denatured DNA. This enzyme exhaustively degraded about 20% of the phosphodiester bonds in native DNA. The enzyme also degraded poly(dA) and poly(dT), but hardly degraded poly(dG) and poly(dC).  相似文献   

15.
  • 1.1. A leupeptin-sensitive proteinase was partially purified from regressing tadpole tails by acetone factionation and column chromatography on S-Sepharose.
  • 2.2. The enzyme degraded hemoglobin and myoglobin at pH 3.0. The enzyme also hydrolyzed Z-Phe-Arg-MCA and Boc-Val-Leu-Lys-MCA at pH 4.0.
  • 3.3. The enzyme activity was inhibited by leupeptin, egg cystatin, E-64 and monoiodoacetic acid and was activated by l-cysteine.
  • 4.4. The enzyme degraded myosin and actin in myofibrils of tadpole tails.
  • 5.5. The enzyme belongs to the cysteine proteinase and is possibly involved in tail degradation during the metamorphosis of tadpoles.
  相似文献   

16.
A bacterium capable of utilizing p-cresol as sole source of carbon and energy was isolated from soil and identified as a Bacillus species. The organism also utilized phenol, o-cresol, m-cresol, 4-hydroxybenzoic acid, and gentisic acid as growth substrates. The organism degraded p-cresol to 4-hydroxybenzoic acid, which was further metabolized by a gentisate pathway, as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extract. Such a bacterial strain can be used for bioremediation of environments contaminated with phenolic compounds.  相似文献   

17.
An exopolygalacturonase (exo-PGase; EC 3.2.1.82) was found in the culture broth of a Bacillus isolate. The gene encoding the exo-PGase, pehK, was cloned by polymerase chain reaction using mixed primers designed from N-terminal and internal amino acid (aa) sequences of the enzyme (PehK). The determined nucleotide (nt) sequence of pehK revealed a 2940 bp open reading frame (980 aa) that encoded a putative signal sequence (27 aa) and a mature protein (953 aa; 103 810 Da). The recombinant enzyme was purified to homogeneity from a culture broth of Bacillus subtilis harboring a pehK-containing plasmid. It had a molecular mass of 105 kDa and a pI value of 5.0. The maximum activity was observed at pH 8 and 55°C in Tris–HCl buffer. The degradation products from polygalacturonic or oligogalacturonic acids were digalacturonic acid, like the exo-PGases, PehX of Erwinia chrysanthemi and PehB of Ralstonia solanacearum. The deduced aa sequence of PehK exhibited moderate homology to those of PehX and PehB with approx. 30% identity for both. High homology was observed in a suitably aligned internal region of the three enzymes (65% identity), and some of the conserved aa residues appeared to form the catalytic core of the enzymes.  相似文献   

18.
3-Dehydroquinate synthase was purified to homogeneity from Escherichia coli. It was found to be a single polypeptide chain of Mr = approximately 57,000. Reaction mixtures of pure enzyme and the substrate, 3-deoxy-D-arabino-heptulosonic acid 7-phosphate, were incubated for short times and treated with NaB3H4. The resulting 3-deoxyheptonic acid 7-phosphate was degraded with sodium periodate, and formic acid representing C-5 of the substrate was isolated. The presence of 3H in the formate corresponding to 15% of the enzyme was interpreted as indicating a 5-dehydro derivative of the substrate as an intermediate of the reaction. Quinic acid, resulting from reduction of 3-dehydroquinate with NaB3H4, was also isolated and degraded with periodate. The formate from C-4 of the quinate was unlabeled, indicating that 3,4-bisdehydroquinate is not an intermediate.  相似文献   

19.
1. Using the complete phage particles as an enzyme, O-acetyl (1 leads to 4)-alpha-D-galacturonan (acetylated pectic acid) as a substrate, and gas-liquid-chromatography for the determination of the acid liberated, the virus-catalysed deacetylation of the polymer was studied. The activity was found to be stable up to about 50 degrees C, and from pH 4.5 to 9, with an optimum at pH 7.8; it was not affected by EDTA, or by 1,10-phenanthroline. The initial reaction velocity (at 37 degrees C) exhibited a simple hyperbolical dependence on the substrate concentration, with Km = 10.5 mM for O-acetyl (independent of virus concentration), and Vmax = 15 nmoles/min and 10(10) plaque forming units. The reaction was, however, rapidly inhibited by a partially deacetylated product (but neither by acetate, nor by pectic acid itself). 2. Using the natural substrate, acetylated (1 leads to 4)-2 amino-2-deoxy-alpha-D-galacturonan (Vi polysaccharide, Vi antigen), and a variety of structural analogues, the following conclusions about the substrate specificity of the Vi phage III deacetylase (acetyl-alpha-1,4-galacturonan acylhydrolase) were reached: (a) acetylated galacturonan is as good a substrate as acetylated aminogalacturonan; (b) of the two substrate diastereomers, acetylated alpha-L-guluronan (also 1 ax leads to 4 ax-linked units, but with axial acetyl residues at C-3), and beta-D-mannuronan (1 eq leads to 4 eq-linkages, and axial acetyl groups at C-2), only the former was acted upon, possibly indicating a specificity for the conformation of the polymer rather than for the configuration of the single residues; (c) all acyl analogues tested, O-monofluoroacetyl, O-propionyl, and O-butyryl galacturonan, were inert, showing a high degree of specificity for O-acetyl; (d) the oligomers, acetylated tri- and digalacturonic acid, as well as methyl-alpha-D-galacturonide, were still deacetylated, although more slowly, demonstrating tolerance of the enzyme of substrate size.  相似文献   

20.
When the protease inhibitor from Penicillium cyclopium was mixed with the acid protease of the mold at acid pH formed a precipitate consisting of a enzyme-inhibitor complex. The precipitation occurred maximally at pH 3.0 and was interfered with by increasing amounts of salts and other protein. Subsequent incubation of the complex brought about inactivation of the enzyme and the inactivation was found to be accompanied by modification of the enzyme so that less was precipitable with trichloroacetic acid. Paper chromatography revealed that the enzyme on complete inactivation had been degraded to several fragments or polypeptides. The inhibitor acted on the enzyme in a catalytic fashion, bringing about degradation of more than a stoichiometric amount of enzyme. The proposed mechanism of the inhibitor action involved acceleration of auto-digestion of the enzyme which splits the molecule into small fragments and abolishes the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号