首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   

2.
Granule size is an important parameter when using starch in industrial applications. An artificial tandem repeat of a family 20 starch-binding domain (SBD2) was engineered by two copies of the SBD derived from Bacillus circulans cyclodextrin glycosyltransferase via the Pro-Thr-rich linker peptide from Xyn10A from Cellulomonas fimi. SBD2 and a single SBD were introduced into the amylose-free potato mutant, amf, using appropriate signal sequences. The accumulation of SBD2 into transgenic starch granules was much higher than that of SBD. In a number of transformants, particularly amfSS3, the starch granules were much smaller than in control plants. The amfSS3 mean granule size was 7.8 microm, compared with 15.2 microm in the control, whereas other starch properties were unaltered. This new starch combines the advantage of the high purity of potato starch with that of the small granule size of other crop species, such as cassava, taro and wheat. This starch may find application in the manufacture of biodegradable plastic films. Both genes were also expressed in Escherichia coli and the affinity for soluble starch of the purified recombinant proteins was determined. SBD2 had an approximately 10-fold higher affinity for starch than SBD, indicating that the two appended SBDs act in synergy when binding to their target polysaccharide ligand.  相似文献   

3.
The starch-binding domain from glucoamylase disrupts the structure of starch   总被引:11,自引:0,他引:11  
The full-length glucoamylase from Aspergillus niger, G1, consists of an N-terminal catalytic domain followed by a semi-rigid linker (which together constitute the G2 form) and a C-terminal starch-binding domain (SBD). G1 and G2 both liberate glucose from insoluble corn starch, although G2 has a rate 80 times slower than G1. Following pre-incubation of the starch with SBD, the activity of G1 is uniformly reduced with increasing concentrations of SBD because of competition for binding sites. However, increasing concentrations of SBD produce an initial increase in the catalytic rate of G2, followed by a decrease at higher SBD concentrations. The results show that SBD has two functions: it binds to the starch, but it also disrupts the surface, thereby enhancing the amylolytic rate.  相似文献   

4.
Starch-binding domain shuffling in Aspergillus niger glucoamylase   总被引:2,自引:0,他引:2  
Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.  相似文献   

5.
Characterization of glucoamylase adsorption to raw starch   总被引:1,自引:0,他引:1  
The adsorption of Aspergillus niger glucoamylase forms (GA-I and GA-II) to raw corn starch was studied as a function of pH, ionic strength, and temperature. A three-parameter model was developed to account for the specific and nonspecific adsorption of GA-I to starch. The adsorption of the GA-II form to raw starch was weak and independent of the pH and ionic strength of the mixture. GA-I was bound strongly to the starch surface, with association constant values ranging from 2 to 5 × 106 M−1. Maximum adsorption capacities (saturation concentrations) Qmax for GA-I were affected by pH, inonic strength, and temperature and varied between 1.6 and 4.3 mg protein g−1 starch. The tightly bound GA-I could be specifically eluted from the starch surface with maltose, maltodextrin, or soluble starch. The adsorption of GA-II to starch in the presence of acarbose (glucoamylase activity inhibitor) indicated that the active site participates minimally in the adsorption process. The comparison of the distribution coefficients of GA-I and GA-II showed that the starch-binding domain, present only in GA-I, increases the affinity of GA-I for starch by two orders of magnitude.  相似文献   

6.
Modification of starch biosynthesis pathways holds an enormous potential for tailoring granules or polymers with new functionalities. In this study, we explored the possibility of engineering artificial granule-bound proteins, which can be incorporated in the granule during biosynthesis. The starch-binding domain (SBD)-encoding region of cyclodextrin glycosyltransferase from Bacillus circulans was fused to the sequence encoding the transit peptide (amyloplast entry) of potato granule-bound starch synthase I (GBSS I). The synthetic gene was expressed in the tubers of two potato cultivars (cv. Kardal and cv. Karnico) and one amylose-free (amf) potato mutant. SBDs accumulated inside starch granules, not at the granule surface. Amylose-free granules contained 8 times more SBD (estimated at ca. 1.6% of dry weight) than the amylose-containing ones. No consistent differences in physicochemical properties between transgenic SBD starches and their corresponding controls were found, suggesting that SBD can be used as an anchor for effector proteins without having side-effects. To test this, a construct harbouring the GBSS I transit peptide, the luciferase reporter gene, a PT-linker, and the SBD (in frame), and a similar construct without the linker and the SBD, were introduced in cv. Kardal. The fusion protein accumulated in starch granules (with retainment of luciferase activity), whereas the luciferase alone did not. Our results demonstrate that SBD technology can be developed into a true platform technology, in which SBDs can be fused to a large choice of effector proteins to generate potato starches with new or improved functionalities.  相似文献   

7.
The kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor (BASI) or BASI mutants and barley alpha-amylase 2 (AMY2) were determined using surface plasmon resonance and isothermal titration calorimetry (ITC). Binding kinetics were in accordance with a 1:1 binding model. At pH 5.5, [Ca(2+)] = 5 mM, and 25 degrees C, the k(on) and k(off) values were 8.3 x 10(+4) M(-1) s(-1) and 26.0 x 10(-4) s(-1), respectively, corresponding to a K(D) of 31 nM. K(D) was dependent on pH, and while k(off) decreased 16-fold upon increasing pH from 5.5 to 8.0, k(on) was barely affected. The crystal structure of AMY2-BASI shows a fully hydrated Ca(2+) at the protein interface, and at pH 6.5 increase of [Ca(2+)] in the 2 microM to 5 mM range raised the affinity 30-fold mainly due to reduced k(off). The K(D) was weakly temperature-dependent in the interval from 5 to 35 degrees C as k(on) and k(off) were only increasing 4- and 12-fold, respectively. A small salt dependence of k(on) and k(off) suggested a minor role for global electrostatic forces in the binding and dissociation steps. Substitution of a positively charged side chain in the mutant K140L within the AMY2 inhibitory site of BASI accordingly did not change k(on), whereas k(off) increased 13-fold. ITC showed that the formation of the AMY2-BASI complex is characterized by a large exothermic heat (Delta H = -69 +/- 7 kJ mol(-1)), a K(D) of 25 nM (27 degrees C, pH 5.5), and an unfavorable change in entropy (-T Delta S = 26 +/- 7 kJ mol(-1)). Calculations based on the thermodynamic data indicated minimal structural changes during complex formation.  相似文献   

8.
Isoforms AMY1, AMY2-1 and AMY2-2 of barley alpha-amylase were purified from malt. AMY2-1 and AMY2-2 are both susceptible to barley alpha-amylase/subtilisin inhibitor. The action of these isoforms is compared using substrates ranging from p-nitrophenylmaltoside through p-nitrophenylmaltoheptaoside. The kcat/Km values are calculated from the substrate consumption. The relative cleavage frequency of different substrate bonds is given by the product distribution. AMY2-1 is 3-8-fold more active than AMY1 toward p-nitrophenylmaltotrioside through p-nitrophenylmaltopentaoside. AMY2-2 is 10-50% more active than AMY2-1. The individual subsite affinities are obtained from these data. The resulting subsite maps of the isoforms are quite similar. They comprise four and six glucosyl-binding subsites towards the reducing and the non-reducing end, respectively. Towards the non-reducing end, the sixth and second subsites have a high affinity, the third has very low or even lack of affinity and the first (catalytic subsite) has a large negative affinity. The affinity declines from moderate to low for subsites 1 through 4 toward the reducing end. AMY1 has clearly a more negative affinity at the catalytic subsite, but larger affinities at both the fourth subsites, compared to AMY2. AMY2-1 has lower affinity than AMY2-2 at subsites adjacent to the catalytic site, and otherwise mostly higher affinities than AMY2-2. Theoretical kcat/Km values show excellent agreement with experimental values.  相似文献   

9.
Though the three-dimensional structures of barley alpha-amylase isozymes AMY1 and AMY2 are very similar, they differ remarkably from each other in their affinity for Ca(2+) and when interacting with substrate analogs. A surface site recognizing maltooligosaccharides, not earlier reported for other alpha-amylases and probably associated with the different activity of AMY1 and AMY2 toward starch granules, has been identified. It is located in the C-terminal part of the enzyme and, thus, highlights a potential role of domain C. In order to scrutinize the possible biological significance of this domain in alpha-amylases, a thorough comparison of their three-dimensional structures was conducted. An additional role for an earlier-identified starch granule binding surface site is proposed, and a new calcium ion is reported.  相似文献   

10.
α-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (β/α)8-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel β-sheet termed domain C. New insights integrate the roles of Ca2?+?, different substrates, and proteinaceous inhibitors for α-amylases. Isozyme specific effects of Ca2?+? on the 80% sequence identical barley α-amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2?+? with identical ligands. A fully hydrated fourth Ca2?+? at the interface of the AMY2/barley α-amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2?+? occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2?+?. Subsite mapping has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly discovered ‘sugar tongs’ site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other regions from AMY1 have higher substrate affinity than both parent isozymes. The latest revelations addressing various structural and functional aspects that govern the mode of action of barley α-amylases are reported in this review.  相似文献   

11.
-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (β/)8-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel β-sheet termed domain C. New insights integrate the roles of Ca2 + , different substrates, and proteinaceous inhibitors for -amylases. Isozyme specific effects of Ca2 +  on the 80% sequence identical barley -amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2 +  with identical ligands. A fully hydrated fourth Ca2 +  at the interface of the AMY2/barley -amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2 +  occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2 + . Subsite mapping has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly discovered 'sugar tongs' site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other regions from AMY1 have higher substrate affinity than both parent isozymes. The latest revelations addressing various structural and functional aspects that govern the mode of action of barley -amylases are reported in this review.  相似文献   

12.
Abstract

Protein engineering of barley α-amylase addressed the roles of Ca2+ in activity and inhibition by barley α-amylase/subtilisin inhibitor (BASI), multiple attach in polysaccharide hydrolysis, secondary starch binding sites, and BASI hot spots in AMY2 recognition. AMY1/AMY2 isozyme chimeras faciliatated assignment of function to specific regions of the structure. An AMY1 fusion with starch binding domain and AMY1 mutants in the substrate binding cleft gave degree of multiple attack of 0.9–3.3, compared to 1.9 for wild-type. About 40% of the secondary attacks, succeeding the initial endo-attack, produced DP5-10 maltooligosaccharides in similar proportion for all enzyme variants, whereas shorter products, comprising about 25%, varied depending on the mutation. Secondary binding sites were important in both multiple attack and starch granule hydrolysis. Surface plasmon resonance and inhibition analyses indicated the importance of fully hydrated Ca2+ at the AMY2/BASI interface to strengthen the complex. Engineering of intermolecular contacts in BASI modulated the affinity for AMY2 and the target enzyme specificity.  相似文献   

13.
Kocuria varians alpha-amylase contains tandem starch-binding domains SBD1-SBD2 (SBD12) that possess typical halophilic characteristics. Recombinant tandem domains SBD12 and single domain SBD1, both with amino-terminal hexa-His tag, were expressed in and purified to homogeneity from Escherichia coli. The circular dichroism (CD) spectrum of His-SBD12 was characterized by a positive peak at 233 nm ascribed to the aromatic stacking. Although the signal occurred in the far UV region, it is an indication of tertiary structure folding. CD spectrum of single domain His-SBD1 exhibited the same peak position, signal intensity and spectral shape as those of His-SBD12, suggesting that the aromatic stacking must occur within the domain, and that two SBD domains in SBD12 and SBD1 has a similar folded structure. This structural observation was consistent with the biological activity that His-SBD1 showed binding activity against raw starch granules and amylose resin with 70–80% efficiency compared with binding of equimolar His-SBD12. Although the thermal unfolding rate of SBD12 and SBD1 were similar, the refolding rates of SBD12 and SBD1 from thermal melting were greatly different: His-SBD12 refolded slowly (T1/2 = ~84 min), while refolding of single domain His-SBD1 was found to be 20-fold faster (T1/2 = 4.2 min). The possible mechanism of this large difference in refolding rate was discussed. Maltose at 20 mM showed 5–6 °C increase in thermal melting of both His-SBD12 and His-SBD1, while its effects on the time course of unfolding and refolding were insignificant.  相似文献   

14.
Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.  相似文献   

15.
Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3.  相似文献   

16.
Barley alpha-amylase/subtilisin inhibitor (BASI) is a beta-trefoil fold protein related to soybean trypsin inhibitor (Kunitz) and inhibits barley alpha-amylase isozyme 2 (AMY2), which is de novo synthesized in the seed during germination. Recombinant BASI was produced in Escherichia coli in an untagged form (untagged rBASI), in two His(6)-tag forms (His(6)-rBASI and His(6)-Xa-rBASI), and in an intein-CBD-tagged form (rBASI (intein)). The yields per liter culture after purification were (i) 25 mgl(-1) His(6)-rBASI; (ii) 6 mgl(-1) rBASI purified after cleavage of His(6)-Xa-rBASI by Factor Xa; (iii) 3 mgl(-1) untagged rBASI; and (iv) 0.2 mgl(-1) rBASI after a chitin-column and autohydrolysis of the rBASI-intein-CBD. In Pichia pastoris, rBASI was secreted at 0.1 mgl(-1). The recombinant BASI forms and natural seed BASI (sBASI) all had an identical isoelectric point of 7.2 and a mass of 19,879 Da, as determined by mass spectrometry. The fold of rBASI from the different preparations was confirmed by circular dichroism spectroscopy and rBASI (intein), His(6)-rBASI, and sBASI inhibited AMY2 catalyzed starch hydrolysis with K(i) of 0.10, 0.06, and 0.09 nM, respectively. Surface plasmon resonance analysis of the formation of AMY2/rBASI (intein) gave k(on)=1.3x10(5)M(-1)s(-1), k(off)=1.4x10(-4)s(-1), and K(D)=1.1 nM, and of the savinase-His(6)-rBASI complex k(on)=21.0x10(4)M(-1)s(-1), k(off)=53.0x10(-4)s(-1), and K(D)=25.0 nM, in agreement with sBASI values. K(i) was 77 and 65 nM for inhibition of savinase activity by His(6)-rBASI and sBASI, respectively.  相似文献   

17.
Five selected starches with a 60-fold span in their content of monoesterified starch phosphate were investigated with respect to distribution of glucose 6-phosphate and glucose 3-phosphate residues, amylopectin chain length distributions and gelatinisation properties. The distribution of starch phosphate in the starch granules was determined by preparation of N?geli dextrins followed by quantitative 31P-nuclear magnetic resonance spectroscopy. Total starch phosphate content was positively correlated to the unit chain lengths of the amylopectin as well as to the chain lengths of the corresponding N?geli dextrins. The major part (68-92%) of the total starch phosphate content was partitioned to the hydrolysed (amorphous) parts. Starch-bound glucose 6-phosphate per milligram of starch was 2-fold enriched in the amorphous parts, whereas phosphate groups bound at the 3-position were more evenly distributed. The gelatinisation temperatures of the native starches as determined by differential scanning calorimetry were positively correlated (R(2)=0.75) to starch phosphate content, while crystallinity (gelatinisation enthalpy) and crystal heterogeneity (endotherm peak width) showed no correlations to starch phosphate content. The relations between starch molecular structure, architecture and functional properties are discussed.  相似文献   

18.
Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.  相似文献   

19.
20.
We have previously shown (Chen et al., 1991) that a beta-galactosidase (beta-gal) fusion protein (BSB133) containing 133 amino acids (aa) from the C-terminus of Aspergillus glucoamylase (GA) adsorbs strongly to starch compared to beta-gal, due to the presence of the GA starch-binding domain. We have now made deletions at the N-terminus of this 133-aa region to test the minimal size required for starch binding of beta-gal fusion proteins. Three fusion proteins (BSB119, BSB103, and BSB80) were genetically engineered, containing 119, 103, and 80 C-terminal aa from GA, respectively. The fusion proteins were expressed in Escherichia coli and purified. Purified BSB119 adsorbed to native starch at least 2-fold more strongly than did BSB133 or fusion proteins with shorter tails. Adsorption isotherms generated over a wide range of initial concentrations indicated a 10-fold difference in the loading capacity of starch for BSB119 (36.5 mg of protein/g of starch) compared to beta-gal (3.7 mg of protein/g of starch). Adsorption constants calculated from the initial slopes of the isotherms indicated a nearly 30-fold difference in affinity to starch for BSB119 (Kad = 63 mL/g of starch) compared to beta-gal (Kad = 2.3 mL/g of starch). BSB119 in the presence of crude enzyme extracts also bound to starch with a high affinity compared to a beta-gal control. Potential applications of the starch-binding tail include enzyme immobilization to starch or recovery and purification of target proteins from crude extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号