首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the phylogeographic framework, we assessed the DNA sequence variation at the mitochondrial cytochrome b gene across the distribution range of the barbel Barbus barbus, a widely distributed European cyprinid. Reciprocal monophyly of non-Mediterranean European and Balkan/Anatolian populations is taken as evidence for a long-term barrier to gene flow, and interpreted as a consequence of survival of the species in two separate refugia during several later glacial cycles. Lack of profound genealogical divergence across Europe from western France to the northwestern Black Sea basin is consistent with recent colonization of this area from a single glacial refuge, which was probably located in the Danube River basin. This may have occurred in two steps: into the Western European river basins during the last interglacial, and throughout the Central European river basins after the last glacial. The populations from the Balkans and Anatolia apparently did not contribute mitochondrial DNA to the post-Pleistocene colonization of non-Mediterranean Europe. Lack of detectable variation within the Balkans/Anatolia is attributed mainly to recent expansion throughout these regions, facilitated by the freshwater conditions and seashore regression in the Black Sea during the Late Pleistocene and Early Holocene.  相似文献   

2.
The present study aimed to understand how Anatolian ground squirrels, Spermophilus xanthoprymnus (Bennett, 1835), have responded to global climate changes through the Late Quaternary glacial–interglacial cycles. Accordingly, ecological niche modelling was used, together with molecular phylogeography. Using species occurrence data compiled from field observations and relevant sources and the maximum entropy machine learning algorithm in MAXENT, an ecological niche model was developed to predict the potential geographical distribution of S. xanthoprymnus under reconstructed past (the Last Interglacial, approximately 130 000–116 000 years ago and the Last Glacial Maximum, 21 000 years ago) and present (1950–2000) bioclimatic conditions. In addition, using cytochrome b mitochondrial DNA sequences deposited in GenBank and the Bayesian skyline plot in BEAST, demographic events (population fluctuations) were further assessed over the history of Anatolian ground squirrels. Combined ecological niche modelling and molecular phylogeography revealed that S. xanthoprymnus, itself also a temperate (mid‐latitude) species, has responded to global climate changes through the Late Quaternary glacial–interglacial cycles in a fashion converse to that of most temperate (mid‐latitude) species: its range expanded rather than contracted during the glacial periods and contracted rather than expanded during the interglacial periods. In other words, Anatolian ground squirrels have been in refugia during the interglacial periods, suggesting that the classical paradigm of glacial range contraction and interglacial range expansion for temperate species may not be as general as previously assumed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 19–32.  相似文献   

3.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

4.
Active tectonic history of the Eastern Mediterranean, especially around Aegean area, through the Neogene led to interesting radiation patterns of animal lineages, allowing intriguing biogeographical hypotheses to be tested. Descendants of the ancestral stock in the Miocene Aegean Plate presently occur in the Anatolia, Aegean islands and the Balkan Penninsula. Troglophilus (Orthoptera, Rhaphidophoridae, Troglophilinae) is such a genus represented in these areas with approximately 15 species. The present study addresses the phylogeography of the genus, with a special emphasis on its Anatolian members, aiming to test the biogeographical patterns suggested for this area using mitochondrial [cytochome oxidase I (COI)] and nuclear (ITS1‐5.8S–ITS2) markers. Data matrices obtained from sequences of COI and ITS1‐5.8S–ITS2 were used for phylogenetic analyses using Dolichopoda lycia and Dolichopoda sbordonii as outgroups. All sets of the analyses suggested monophyly of the Anatolian haplotypes, although they are not congruent in revealing their relationships. Anatolian haplotypes constituted three main phylogroups in trees calculated from a matrix of short COI sequences: the ECMA (corresponding to the Eastern part of coastal Mediterranean Anatolia); the CWMA (from the Central and Western part of Mediterranean Anatolia); and NA (from Northern Anatolia). Trees obtained using longer sequences resulted in only two phylogroups, namely ECMA and CWMA + NA. The trees based on the ITS1‐5.8S–ITS2 data matrix supported monophyly of Anatolian phylogroups. BEAST analysis of the COI estimated the time to most recent common ancestor for Dolichopoda and Troglophilus as 10.8 Mya, to that for the Anatolian + Balkan Troglophilus as 7.2 Mya, and to that for the Anatolian Troglophilus as 6.3 Mya. BEAST analysis of ITS1–ITS2 intron regions is largely congruent with that of COI. From these results, several conclusions were drawn. First, the divergence of Dolichopoda and Troglophilus possibly started with the opening of the Mid‐Aegean Trench in the Tortonian. Second, Troglophilus possibly originated from an ancestral stock in the old Aegean Plate. It later diverged as Anatolian and Balkan lineages and, possibly, the Cretan population may be regarded the third lineage. Divergence within the Anatolian lineage is estimated to have occurred through the Pliocene and Pleistocene, although before the last four glacial periods in the late Pleistocene. Additionally, the northern Anatolian Troglophilus appears to originate from the dispersal of an ancestral stock from a mountainous lineage through the Taurus Way. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 335–348.  相似文献   

5.
The Quaternary biogeography of Anatolia has received considerable interest recently. Here, the genealogical history of the Anatolio?Balkan lineage of the Poecilimon luschani species group was evaluated. Using concatenated data from 16S rDNA and cytochrome c oxidase subunit I (COI) sequences, the timings of inter‐ and intraspecies radiations were estimated. The demographic history of the populations was estimated using a data set established from COI sequences. Genetic diversity was very high in almost all of the populations studied. Fixation indices suggested extreme divergence of P. luschani. A molecular chronogram estimated a radiation history for the species/subspecies over a period ranging from 1.323 to 0.440 Myr. Demographic analyses applied to 11 populations suggested departure in population size for most of the local populations. The following conclusions were reached: (1) P. luschani originated from an Anatolio‐Aegean ancestral stock and extended its range to the Balkans through Dardanelles during the Early Pleistocene; (2) the Mid‐Pleistocene Transition, the lengthening of glacial period from 41 to 100 Kyr and the initiation of intense glaciation periods are the three main events corresponding to the main nodes of the chronogram; (3) altitudinal heterogeneity played a buffer role during the glacial cycles, allowing populations to cope with severe environmental changes; (4) the effects of Pleistocene climate cycles on populations differ according to altitudinal and latitudinal location in Anatolia, and (5) habitat preferences, such as altitudinal range, may easily shift because of changes in environmental conditions. © 2014 The Linnean Society of London  相似文献   

6.
In the evolutionary history of modern humans, Anatolia acted as a bridge between the Caucasus, the Near East, and Europe. Because of its geographical location, Anatolia was subject to migrations from multiple different regions throughout time. The last, well-known migration was the movement of Turkic speaking, nomadic groups from Central Asia. They invaded Anatolia and then the language of the region was gradually replaced by the Turkic language. In the present study, insertion frequencies of 10 Alu loci (A25 = 0.07, APO = 0.96, TPA25 = 0.44, ACE = 0.37, B65 = 0.57, PV92 = 0.18, FXIIIB = 0.52, D1 = 0.40, HS4.32 = 0.66, and HS4.69 = 0.30) have been determined in the Anatolian population. Together with the data compiled from other databases, the similarity of the Anatolian population to that of the Balkans and Central Asia has been visualized by multidimensional scaling method. Analysis suggested that, genetically, Anatolia is more closely related with the Balkan populations than to the Central Asian populations. Central Asian contribution to Anatolia with respect to the Balkans was quantified with an admixture analysis. Furthermore, the association between the Central Asian contribution and the language replacement episode was examined by comparative analysis of the Central Asian contribution to Anatolia, Azerbaijan (another Turkic speaking country) and their neighbors. In the present study, the Central Asian contribution to Anatolia was estimated as 13%. This was the lowest value among the populations analyzed. This observation may be explained by Anatolia having the lowest migrant/resident ratio at the time of migrations.  相似文献   

7.
David Lack 《Bird Study》2013,60(1):14-17
Capsule This study is the first ever documented evidence of an interglacial refugium during the Last Interglacial for birds in Anatolia and suggests the need of a re-examination of the effects of the Last Interglacial on the geographic distribution and genetic structure of species.

Aims We tested whether, in accordance with the ‘refugia within refugia’ model, multiple refugia existed for Kruper's Nuthatch Sitta krueperi during the Last Glacial Maximum or the species survived along the coastal belt of Anatolia through the Late Quaternary glacial–interglacial cycles.

Methods An ecological niche model was developed to predict the geographic distribution of Kruper's Nuthatch under reconstructed past (the Last Interglacial and the Last Glacial Maximum), present, and projected future bioclimatic conditions. Also, robust coalescent-based analyses were used to assess demographic events over the history of Kruper's Nuthatch.

Results Kruper's Nuthatch survived the Last Glacial Maximum almost along the coastal belt of Anatolia, but not in multiple refugia, and surprisingly, contrary to expectations, it survived the Last Interglacial in southern Anatolia, but not along the coastal belt of Anatolia.

Conclusion A kind of the ‘refugia within refugia’ model (i.e. the ‘refugium within refugium’ model) was supported because range shifts took place within Anatolia (itself also a refugium) for Kruper's Nuthatch.  相似文献   

8.
Glacial and interglacial cycles of the Pleistocene have led to severe range fluctuations of many species. These range shifts of the past often are reflected by extant genetic signatures. Retractions of distribution areas often have fostered splits into several small and isolated retreats as remnants of the formerly interconnected range. These processes often go in line with losses of intraspecific diversity. By contrast, large and interconnected distribution ranges mostly sustain high levels of genetic variability. The genetic impact of both scenarios strongly depends on the temporal scale. In the present study, we tested the genetic effects of an assumed long‐lasting widespread distribution during glacial periods and more short‐term population retractions to mountain archipelagos during warm stages. We analyzed polymorphic allozymes for individuals of the Eastern Large Heath butterfly, Coenonympha rhodopensis, including major parts of its distribution, such as central Italy and the Balkan Peninsula. Our data show extraordinarily high genetic diversity. The only remarkable genetic split is detectable between the central Apennines (Italy) and the Balkan mountain systems. The populations sampled over seven Balkan mountain systems (Jakupica, Shar Planina, Ossogovo, Pirin, Rila, Rhodopes, and Stara Planina) show low genetic differentiation. This low genetic differentiation and high genetic diversity diverges from the genetic structures frequently found in species with disjunct distributions. We therefore hypothesize that the obtained molecular structure is the product of down‐slope shift during the last cold stage and subsequent expansion over the lowlands of the Balkan Peninsula. The current mountain restriction most probably occurred with the beginning of the postglacial warming, which is too short a time span to be of evolutionary relevance. Therefore, the recent high genetic diversities and low differentiation may still reflect long‐lasting glacial panmixia but not (yet) the recent disjunction. The strong genetic differentiation between the Balkans and Italian Apennines must result from an earlier dispersal process, most probably from the Balkans to Italy. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110; , 281–290.  相似文献   

9.
We determined the faunal composition and total number of tests (#/g) of planktic foraminifera (> 125 μm) in core KH00-05 GOA 6 near Oman in order to decipher monsoon-induced variability of oceanographic productivity in the open-ocean upwelling area in the northwest Arabian Sea. The core contains a continuous record of sedimentation over the last 230 kyr, with the age model based on oxygen isotope and accelerator mass spectrometry 14C dates. We focused on species (Globigerina bulloides and Globigerinita glutinata) typical for SW monsoonal upwelling and species typical for NE monsoon conditions (Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerinoides ruber, and Globigerinoides sacculifer). The changes in relative abundance of these monsoonal indicators suggest that the open-ocean upwelling area was dominated by the SW monsoon during interglacial periods, but by the NE monsoon during glacial periods.Increases in total test abundance during glacial periods confirmed that the NE monsoon rather than SW monsoon contributes largely to planktic foraminiferal productivity in this area. We argue that three types of circumstances resulted in high productivity, with nine high productivity events occurring at a 23-kyr frequency. The first type caused high productivity events at 102 and 199 ka (interglacial periods), characterized by the dominance of upwelling species, indicating high productivity during strong SW monsoons, correlated with high July insolation at 45° N. An exceptional high productivity event occurred at 37 ka during interglacial marine isotope stage (MIS) 3, with contributions from both SW and NE monsoons. The second type of high productivity event occurred at 61, 147, and 175 ka, during glacial periods, characterized by dominance of NE monsoon species, and correlated with low January insolation at 45° N. In addition, a high productivity event at 85 ka (interglacial period) also was induced by enhanced NE monsoons. The last two high productivity events occurred during transitional periods from glacial to interglacial (MIS 6/5.5 and 2/1), were characterized by the replacement of NE monsoon species with upwelling species, and corresponded to abrupt climate warming, suggesting that they are related to both accelerated SW monsoon systems and reduced NE monsoon systems.  相似文献   

10.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

11.
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine‐Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of Lglacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming.  相似文献   

12.
Identification of intraspecific conservation units and incorporating the distribution of genetic diversity into management plans are crucial requirements for assessing effective protection strategies. This study investigates the phylogeographic structures of 33 bat species present in the Near East in order to evaluate the conservation implications of their intraspecific genetic diversity both at regional and large-scale levels. To compare Anatolian populations with the European ones, we utilized two commonly used mitochondrial markers, Cytb and ND1, and analysed them together with the available sequences from GenBank. The management requirements of the identified clades and their taxonomical relations were evaluated by analysing their distributions and the levels of their genetic differentiations. In 12 species and the large Myotis complex, we identified a total of 15 genetically distinct populations found in the Near East, some of which might represent biologically distinct taxa. Comparing the phylogeographic patterns of different taxa indicates that three regions, the Balkans, the Caucasus, and the southern Anatolia, harbour genetically divergent populations and should have higher priority in conservation practices. Considering that Turkey has one of the richest bat fauna in the Mediterranean region and the Anatolian populations of various species are genetically distinct, protecting populations in Turkey is critically important for preserving the genetic diversity of the bats in the Western Palaearctic. Both regional and large-scale conservation strategies, which incorporate the distribution of genetic diversity, should be assessed and further ecological studies are needed to clarify the taxonomic relations of the identified clades.  相似文献   

13.
Using both nuclear and mitochondrial sequences, we demonstrate high genetic differentiation in the genus Talpa and confirm the existence of cryptic species in the Caucasus and Anatolia, namely, T. talyschensis Vereschagin, 1945, T. ognevi Stroganov, 1948, and Talpa ex gr. levantis. Our data support four clades in the genus Talpa that showed strong geographical associations. The ‘europaea’ group includes six species from the western portion of the genus' range (T. europaea, T. occidentalis, T. romana, T. caeca, T. stankovici, and T. levantis s.l.); another three groups are distributed further east: the ‘caucasica’ group (Caucasus), the ‘davidiana’ group (eastern Anatolia and Elburz) and T. altaica (Siberia). The phylogenetic position of T. davidiana was highlighted for the first time. The order of basal branching remains controversial, which can be attributed to rapid diversification events. The molecular time estimates based on nuclear concatenation estimated the basal divergence of the crown Talpa during the latest Miocene. A putative scenario of Talpa radiation and issues of species delimitation are discussed. © 2015 The Linnean Society of London  相似文献   

14.
Northern and mountainous ice sheets have expanded and contracted many times due to ice ages. Consequently, temperate species have been confined to refugia during the glacial periods wherefrom they have recolonized warming northern habitats between ice ages. In this study, we compare the gene CYP405A2 between different populations of the common burnet moth Zygaena filipendulae from across the Western Palearctic region to illuminate the colonization history of this species. These data show two major clusters of Z. filipendulae populations possibly reflecting two different refugial populations during the last ice age. The two types of Z. filipendulae only co‐occur in Denmark, Sweden, and Scotland indicating that Northern Europe comprise the hybridization zone where individuals from two different refugia met after the last ice age. Bayesian phylogeographic and ecological clustering analyses show that one cluster probably derives from an Alpe Maritime refugium in Southern France with ancestral expansive tendencies to the British Isles in the west, touching Northern Europe up to Denmark and Sweden, and extending throughout Central Europe into the Balkans, the Peleponnes, and South East Europe. The second cluster encompasses East Anatolia as the source area, from where multiple independent dispersal events to Armenia, to the Alborz mountains in north‐western Iran, and to the Zagros mountains in western Iran are suggested. Consequently, the classical theory of refugia for European temperate species in the Iberian, Italian, and Balkan peninsulas does not fit with the data from Z. filipendulae populations, which instead support more Northerly, mountainous refugia.  相似文献   

15.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

16.
Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of the Palaearctic region, ranging from the North African Maghreb region and the Iberian Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addition, some authors recognize big‐headed grass snakes from western Transcaucasia as a distinct species, N. megalocephala. Based on phylogenetic analyses of a 1984‐bp‐long alignment of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range‐wide phylogeography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades were identified, most of which conflict with morphologically defined subspecies. These 16 clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North Africa, (ii) East Europe and Asia and (iii) West Europe including Corso‐Sardinia, the Apennine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expansions are presented. Refugia were most likely located in each of the southern European peninsulas, Corso‐Sardinia, North Africa, Anatolia and the neighbouring Near and Middle East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and Middle East. Holocene range expansions led to the colonization of more northerly regions and the formation of secondary contact zones. Western Europe was invaded from a refuge within southern France, while Central Europe was reached by two distinct range expansions from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct mitochondrial clades, and one of these contact zones was theretofore completely unknown. Another contact zone is hypothesized for Eastern Europe, which was colonized, like north‐western Asia, from the Caucasus region. Further contact zones were identified for southern Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphological characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala. Therefore, N. megalocephala is synonymized with N. natrix.  相似文献   

17.
The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.  相似文献   

18.
Holarctic biodiversity has been influenced by climatic fluctuations since the Pliocene. Asia Minor was one of the major corridors for postglacial invasions in the Palearctic. Today this area is characterized by an extraordinarily rich fauna with close affiliation to European, Asian and Indo-African biota. However, exact scenarios of range expansion and contraction are lacking. Using a phylogeographical approach we (i). identify monophyletic lineages among Anatolian mountain frogs and (ii). derive a spatio-temporal hypothesis for the invasion process in Anatolia. We sequenced 540 bp of the mitochondrial 16S rRNA gene from 40 populations of mountain frogs from Anatolia, the Elburz Mountains and the Caucasus. Our samples comprise all known species and subspecies: Rana macrocnemis macrocnemis, R. m. tavasensis, R. m. pseudodalmatina, R. camerani and R. holtzi. They include the type localities of four of these taxa. We used a nested clade analysis (NCA) to infer historical and recurrent events that account for the observed geographical distribution of haplotypes. None of the extant species is monophyletic. Based on a molecular clock calibration using homologous sequences of Western Palearctic water frogs of the same genus, we estimated that a basic radiation into three lineages c. 2 Mya was followed by several dispersal and fragmentation events. The geographical distribution of resident and widespread haplotypes allows us to infer and date scenarios of range expansion and fragmentation that are aligned with dramatic climatic oscillations that have occurred during the last 600000 years. Consequently, Pliocene and Pleistocene climatic oscillations triggered the evolution of Anatolian mountain frogs through an interplay of vicariance and dispersal events.  相似文献   

19.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

20.
In this study, we investigated the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Troglophilus (Orthoptera, Rhaphidophoridae) from caves in eastern Mediterranean and Anatolia regions. Three mitochondrial DNA genes (COI, 12S rDNA, and 16S rDNA) and two nuclear ones (18S rDNA and 28S rDNA) were amplified and partially sequenced to reconstruct phylogenetic relationships among most of the known Troglophilus species. Results showed a well‐resolved phylogeny with three main clades representing the Balkan, the Anatolian, and the Cycladian–Cretan lineages. Based on Bayesian analyses, we applied a relaxed molecular clock model to estimate the divergence times between these three lineages. Dating estimates indicate that radiation of the ingroup might have been triggered by the opening of the Mid‐Aegean trench, while the uplift of the Anatolian Plateau in Turkey and the changes of relief, emergence, and disappearance of orographic and hydrographical barriers in the Balkan Peninsula are potential paleogeographic events responsible for the initial diversification of the genus Troglophilus. A possible biogeographic scenario, reconstructed using S‐DIVA with RASP software, suggested that the current distribution of Troglophilus species can be explained by a combination of both dispersal and vicariance events that occurred in particular in the ancestral populations. The radiation of Troglophilus species likely started from the Aegean and proceeded eastward to Anatolia and westward to the Balkan region. Results are additionally compared to those available for Dolichopoda, the only other representative genus of Rhaphidophoridae present in the Mediterranean area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号