首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root-knot nematodes are biotrophic parasites that invade the root apex of host plants and migrate towards the vascular cylinder where they induce the differentiation of root cells into hypertrophied multinucleated giant cells. Giant cells are part of the permanent feeding site required for nematode development into the adult stage. To date, a repertoire of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection has been identified. However, the precise role of these candidate effectors during root invasion or during giant cell induction and maintenance remains largely unknown. Primarily, the identification of the destination of nematode effectors within plant cell compartment(s) is crucial to decipher their actual functions. We analyzed the fine localization in root tissues of five nematode effectors throughout the migratory and sedentary phases of parasitism using an adapted immunocytochemical method that preserves host and pathogen tissues. We showed that secretion of effectors from the amphids or the oesophageal glands is tightly regulated during the course of infection. The analyzed effectors accumulated in the root tissues along the nematode migratory path and along the cell wall of giant cells, showing the apoplasm as an important destination compartment for these effectors during migration and feeding cell formation.Key words: plant pathogen, effector, immunocytochemistry, root-knot nematode, secretion, plant apoplasm  相似文献   

2.
3.
The parasitome of the phytonematode Heterodera glycines   总被引:2,自引:0,他引:2  
Parasitism genes expressed in the esophageal gland cells of phytonematodes encode secretions that control the complex process of plant parasitism. In the soybean cyst nematode, Heterodera glycines, the parasitome, i.e., the secreted products of parasitism genes, facilitate nematode migration in soybean roots and mediate the modification of root cells into elaborate feeding cells required to support the growth and development of the nematode. With very few exceptions, the identities of these secretions are unknown, and the mechanisms of cyst nematode parasitism, therefore, remain obscure. The most direct and efficient approach for cloning parasitism genes and rapidly advancing our understanding of the molecular interactions during nematode parasitism of plants is to create gland cell-specific cDNA libraries using cytoplasm microaspirated from the esophageal gland cells of various parasitic stages. By combining expressed sequence tag analysis of a gland cell cDNA library with high throughput in situ expression localization of clones encoding secretory proteins, we obtained the first comprehensive parasitome profile for a parasitic nematode. We identified 51 new H. glycines gland-expressed candidate parasitism genes, of which 38 genes constitute completely novel sequences. Individual parasitome members showed distinct gland cell expression patterns throughout the parasitic cycle. The parasitome complexity discovered paints a more elaborate picture of host cellular events under specific control by the nematode parasite than previously hypothesized.  相似文献   

4.
5.
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.  相似文献   

6.
Esophageal secretions from endoparasitic sedentary nematodes are thought to play key roles throughout plant parasitism, in particular during the invasion of the root tissue and the initiation and maintenance of the nematode feeding site (NFS) essential for nematode development. The secretion in planta of esophageal cell-wall-degrading enzymes by migratory juveniles has been shown, suggesting a role for these enzymes in the invasion phase. Nevertheless, the secretion of an esophageal gland protein into the NFS by nematode sedentary stages has never been demonstrated. The calreticulin Mi-CRT is a protein synthesized in the esophageal glands of the root-knot nematode Meloidogyne incognita. After three-dimensional modeling of the Mi-CRT protein, a surface peptide was selected to raise specific antibodies. In planta immunolocalization showed that Mi-CRT is secreted by migratory and sedentary stage nematodes, suggesting a role for Mi-CRT throughout parasitism. During the maintenance of the NFS, the secreted Mi-CRT was localized outside the nematode at the tip of the stylet. In addition, Mi-CRT accumulation was observed along the cell wall of the giant cells that compose the feeding site, providing evidence for a nematode esophageal protein secretion into the NFS.  相似文献   

7.
8.
Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.  相似文献   

9.
D L Lee  R R Shivers 《Tissue & cell》1987,19(5):665-671
The muscle fibres of mice containing the infective-stage larvae of the nematode Trichinella spiralis have been studied by means of the freeze-fracturing technique. The larva lies in what appears to be a fluid-filled cavity within the cytoplasm of an altered muscle fibre. There is no membrane separating the cytoplasm of the nurse cell from the cavity surrounding the larva which is therefore truly intracellular, unlike many parasites that reside within a membrane-lined parasitophorous vacuole within the host cell. This altered muscle fibre, known as a nurse cell, lacks myofilaments but does contain extensive cisternae of endoplasmic reticulum; membrane-bound vesicles are budded off from the endoplasmic reticulum and traverse the cytoplasm towards the cavity containing the nematode where they apparently pass into the cavity. It is suggested that the contents of these vesicles are used to sustain the nematode. Attention is drawn to the similarity to giant cells that have been induced by the plant-parasitic nematode Meloidogyne in the roots of host plants and which sustain the nematode. The conversion of the muscle fibre into a nurse cell is probably brought about by the presence of a metabolic sink, the larval nematode, within the cell. This take-over of the control of a metazoan cell by another metazoan organism is most unusual and warrants further study.  相似文献   

10.
游娟  黄建林  曹莉  韩日畴 《微生物学通报》2012,39(10):1407-1417
【目的】初生型Photorhabdus luminescens细菌产生两种胞内晶体蛋白CipA和CipB,为其共生的昆虫病原异小杆线虫提供营养。探索非共生的斯氏线虫对Cip蛋白的营养利用情况。【方法】在已构建重组Cip蛋白大肠杆菌表达体系的基础上,建立重组菌细胞与无菌斯氏SY-5线虫共培养系统,检测线虫的生长发育情况。【结果】Cip蛋白对目标线虫生长有显著支持作用:发育为成虫的比例达到65%-82%,雌虫的怀卵率为80%-95%,平均怀卵量为30-50粒,并显著降低各虫态的死亡率。【结论】Cip蛋白不仅为共生的异小杆线虫提供营养,亦能为斯氏线虫所利用。  相似文献   

11.
The plant parasitic nematode Meloidogyne incognita is as an obligate parasite entirely dependent on the plants solute supply. Therefore, the nematodes induce the formation of several giant cells which are embedded into root galls. At present only little information is available about the solute transfer mechanisms of the plants to supply the induced galls and giant cells and consequently the nematodes. In the present work we could show by phloem-loading experiments that giant cells in the roots of Arabidopsis thaliana are not symplasmically connected to the phloem elements, thus differing considerably form the comparable plant–nematode interaction of Arabidopsis and Heterodera schachtii . Consequently the gene expression of the sucrose transporter AtSUC4 ( AtSUT4 ) was studied during nematode development, and its functionality was shown using RNAi gene silencing lines.  相似文献   

12.
A fast plant promoter test was developed by means of a nematode to transfer Agrobacterium tumefaciens into plant roots. Two-week-old Arabidopsis thaliana (L.) Heynh. plants were transferred to infection medium. Meloidogyne incognita or Heterodera schachtii juveniles were mixed with the Agrobacterium strain that harboured the binary vector, and this mixture was used for plant inoculation. During migration of the nematode and establishment of the feeding site inside the roots, the T-DNA was delivered into the root cells. A few days later, the infected plants could be analysed for expression of the T-DNA reporter gene in and around the nematode feeding sites (NFS), without the need to go first through the whole transformation and regeneration procedure. Depending on the construct, expression of the β-glucuronidase gene in the NFS or along the migration path of the nematode could be seen in the roots of Arabidopsis plants. Furthermore, stably transformed plants could be regenerated from the infected roots.  相似文献   

13.
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.  相似文献   

14.
A method is presented that enables studies to be made of single nematode-fungal interactions under conditions where fungal growth at the expense of external nutrients is prevented. The nematophagous fungus Arthrobotrys ologospora was used as a model organism in these studies. The method is based on removal of the traps from the vegetative mycelium, immediately after a nematode was captured and transfer of the trap with the captured nematode into a droplet of sterile distilled water placed in a moisture chamber. In the absence of external nutrients, such isolated traps of A. oligospora were fully effective in penetrating and subsequently digesting the captured nematode. Solely vegetative mycelium was formed at the expense of the digested nematode; this developed from the trap that originally had captured the nematode. One advantage of the present method is that studies on various stages of the nematode-fungal interaction can now be performed under conditions that exclude major influences of external nutrients which otherwise could be communicated to the trap cells by way of the vegetative mycelium.  相似文献   

15.
Parasitic nematode infections of humans and livestock continue to impose a significant public health and economic burden worldwide. Murine models of intestinal nematode infection have proved to be relevant and tractable systems to define the cellular and molecular basis of how the host immune system regulates resistance and susceptibility to infection. While susceptibility to chronic infection is propagated by T helper cell type 1 cytokine responses (characterised by production of IL-12, IL-18 and interferon-gamma), immunity to intestinal-dwelling adult nematode worms is critically dependent on a type 2 cytokine response (controlled by CD4+T helper type 2 cells that secrete the cytokines IL-4, IL-5, IL-9 and IL-13). However, the immune effector mechanisms elicited by type 2 cytokines in the gut microenvironment that precipitate worm expulsion have remained elusive. This review focuses on new studies that implicate host intestinal epithelial cells as one of the dominant immune effector cells against this group of pathogens. Specifically, three recently identified type 2 cytokine-dependent pathways that could offer insights into the mechanisms of expulsion of parasitic nematodes will be discussed: (i) the intelectins, a new family of galactose-binding lectins implicated in innate immunity, (ii) the resistin-like molecules, a family of small cysteine-rich proteins expressed by multiple cell types, and (iii) cytokine regulation of intestinal epithelial cell turnover. Identifying how the mammalian immune response fights gastrointestinal nematode infections is providing new insights into host protective immunity. Harnessing these discoveries, coupled with identifying what the targets of these responses are within parasitic nematodes, offers promise in the design of a new generation of anti-parasitic drugs and vaccines.  相似文献   

16.
Bitter gourd (Momordica charantia L.) was inoculated with root-knot nematode Meloidogyne incognita to investigate the anatomical abnormalities in the affected roots. Soon after inoculation the second-stage juveniles (J2) entered at or near the root caps and migrated intercellularly towards the zone of vascular differentiation. Discrete giant cells were observed after three days of inoculation. The nematode induced hypertrophy and hyperplasia near the giant cells. After six days, the juveniles moulted to their third stage (J3). At the same, time giant cell size and density of giant cell cytoplasm increased. The continuity of vascular strands remained unaffected. Between 12 and 24 days of inoculation the giant cells enlarged several times and became multinucleate and enclosed dense and granular cytoplasm. The nematodes became almost pyriform 18 days after inoculation. The orientation of vascular strands changed, due to hypertrophy, hyperplasia and enlargement of the nematode. After 30 days of inoculation the nematodes developed into mature females and started egg laying. A large amount of parenchyma transformed into abnormal xylem.  相似文献   

17.
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode’s life cycle and reproduction.  相似文献   

18.
19.
20.
The bacterium Photorhabdus luminescens is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora. The nematode requires the bacterium for infection of insect larvae and as a substrate for growth and reproduction. The nematodes do not grow and reproduce in insect hosts or on artificial media in the absence of viable P. luminescens cells. In an effort to identify bacterial factors that are required for nematode growth and reproduction, transposon-induced mutants of P. luminescens were screened for the loss of the ability to support growth and reproduction of H. bacteriophora nematodes. One mutant, NGR209, consistently failed to support nematode growth and reproduction. This mutant was also defective in the production of siderophore and antibiotic activities. The transposon was inserted into an open reading frame homologous to Escherichia coli EntD, a 4'-phosphopantetheinyl (Ppant) transferase, which is required for the biosynthesis of the catechol siderophore enterobactin. Ppant transferases catalyze the transfer of the Ppant moiety from coenzyme A to a holo-acyl, -aryl, or -peptidyl carrier protein(s) required for the biosynthesis of fatty acids, polyketides, or nonribosomal peptides. Possible roles of a Ppant transferase in the ability of P. luminescens to support nematode growth and reproduction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号