首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hypoxia modulates diaphragm function in the developing rat.   总被引:2,自引:0,他引:2  
We studied the effect of chronic hypoxia on contractile properties and neuromuscular transmission in the developing rat diaphragm. We hypothesized that chronic hypoxia delays maturation of neuromuscular transmission. Phrenic nerve hemidiaphragm preparations were harvested from 3- to 26-day-old rats and littermates raised in 9.5% oxygen. Specific force, contraction time, and one-half relaxation time were measured. Each diaphragm was stimulated directly or via its nerve with 1-s trains at 10-100 Hz. Contraction time and one-half relaxation time decreased with advancing age in both groups, with a greater rate of decrease in hypoxic diaphragms. Specific force was lower for hypoxic diaphragms compared with controls. Diaphragms from the 3- to 10-day-old control and hypoxic groups generated less force in response to stimulation at frequencies >40 Hz but did so to a greater degree with nerve stimulation. Nerve stimulation of diaphragms from 11- to 18-day-old hypoxic rats showed a greater decrease in force with increasing frequency compared with age-matched controls. Diaphragms from 19- to 26-day-old rats showed no difference between the hypoxic and control groups. We conclude that chronic hypoxia leads to diaphragms that generate lower specific force as well as to a delayed maturation of mechanisms involved in neuromuscular transmission.  相似文献   

2.
Chronic exposure to hypoxia results in a time-dependent increase in ventilation called ventilatory acclimatization to hypoxia. Increased O(2) sensitivity of arterial chemoreceptors contributes to ventilatory acclimatization to hypoxia, but other mechanisms have also been hypothesized. We designed this experiment to determine whether central nervous system processing of peripheral chemoreceptor input is affected by chronic hypoxic exposure. The carotid sinus nerve was stimulated supramaximally at different frequencies (0.5-20 Hz, 0.2-ms duration) during recording of phrenic nerve activity in two groups of anesthetized, ventilated, vagotomized rats. In the chronically hypoxic group (7 days at 80 Torr inspired PO(2)), phrenic burst frequency (f(R), bursts/min) was significantly higher than in the normoxic control group with carotid sinus nerve stimulation frequencies >5 Hz. In the chronically hypoxic group, peak amplitude of integrated phrenic nerve activity ( integral Phr, percent baseline) or change in integral Phr was significantly greater at stimulation frequencies between 5 and 17 Hz, and minute phrenic activity ( integral Phr x f(R)) was significantly greater at stimulation frequencies >5 Hz. These experiments show that chronic hypoxia facilitates the translation of arterial chemoreceptor afferent input to ventilatory efferent output through a mechanism in the central nervous system.  相似文献   

3.
Different effects of halothane on diaphragm and hindlimb muscle in rats   总被引:2,自引:0,他引:2  
The effects of halothane administration on diaphragm and tibialis anterior (TA) muscle were investigated in 30 anesthetized mechanically ventilated rats. Diaphragmatic strength was assessed in 17 rats by measuring the abdominal pressure (Pab) generated during supramaximal stimulation of the intramuscular phrenic nerve endings at frequencies of 0.5, 30, and 100 Hz. Halothane was administered during 30 min at a constant minimum alveolar concentration (MAC): 0.5, 1, and 1.5 MAC in three groups of five rats. For each MAC, Pab was significantly reduced for all frequencies of stimulation except at 100 Hz during 0.5 MAC halothane exposure. The effects of halothane (0.5, 1, and 1.5 MAC) on diaphragmatic neuromuscular transmission were assessed in five other rats by measuring the integrated electrical activity of the diaphragm (Edi) during electrical stimulation of the phrenic nerve. No change in Edi was observed during halothane exposure. In five other rats TA contraction was studied by measuring the strength of isometric contraction of the muscle during electrical stimulation of its nerve supply at different frequencies (0.5, 30, and 100 Hz). Muscle function was unchanged during administration of halothane in a cumulative fashion from 0.5 to 1.5 MAC. These results demonstrate that halothane does not affect hindlimb muscle function, whereas it had a direct negative inotropic effect on rat diaphragmatic muscle.  相似文献   

4.
满恒业  刘磊 《生理学报》1992,44(1):92-97
实验在45只麻醉、自主呼吸、断双侧颈迷走神经的家兔上进行。电刺激或微量注射L-谷氨酸钠于中缝隐核(Nucleus raphe obscurus,NRO),观察到:(1)长串电脉冲刺激NRO(50—200μA,波宽0.3ms,100Hz,4—6s),出现膈神经放电被抑制的反应,被抑制的程度与刺激强度、刺激频率间存在相关性。(2)吸气期用短串电脉冲(100—200μA,波宽0.3ms,50—100Hz,5—20个脉冲)刺激NRO,可提前终止膈神经放电,产生吸气切断效应。吸气切断时间具有刺激落位和刺激强度依赖性。(3)NRO内微量注射细胞体兴奋剂谷氨酸钠(1mol/L,1μl),注药期间出现膈神经放电抑制,注药后为吸气时程(Ti)缩短和呼气时程(Te)延长。  相似文献   

5.
Contractile properties of the human diaphragm in vivo   总被引:3,自引:0,他引:3  
The mechanical properties of the human diaphragm have been studied at fractional residual capacity in normal seated subjects with closed glottis. The transdiaphragmatic pressure (Pdi) developed in response to single shocks or to trains of stimuli at increasing frequency was approximately 3 times greater during bilateral than unilateral stimulation. During unilateral phrenic nerve stimulation the Pdi twitches increased as the interval (0-200 ms) of a preceding conditioning stimulus to the contralateral phrenic nerve was decreased suggesting that the two hemidiaphragms are mechanically coupled in series. The contraction time and half-relaxation time of single bilateral twitches as well as the Pdi-frequency relationship (5-35 Hz) during bilateral tetanic stimulation indicate that the contractile properties of the human diaphragm are intermediate between those of fast- and slow-twitch muscle fibers. The results suggest that the contractile properties of the human diaphragm are well illustrated by single bilateral twitches recorded from the relaxed muscle, but that the responses to unilateral stimulation are misleading due to distortion by abnormal changes in the muscle geometry.  相似文献   

6.
Effect of cocaine on responses of mouse phrenic nerve-diaphragm preparation   总被引:1,自引:1,他引:0  
Effects of 5 to 40 microM cocaine on the compound action potential (AP) and tension responses of the mouse phrenic nerve-diaphragm preparation were monitored following nerve and muscle stimulation at 37 degrees C. Cocaine caused concentration dependent reduction in amplitude of the nerve AP, muscle AP, and tension response to a single nerve stimulus, and greater reduction in amplitude of these responses to repetitive nerve stimuli at 100 Hz for 0.5 sec. Cocaine caused similar reduction in the muscle AP and tension responses to direct muscle stimulation in the presence or absence of curare, and markedly reduced the overshoot, total potential, and maximum rate of rise and fall of intracellularly recorded muscle AP, without affecting the resting potential, or the contracture responses evoked by caffeine. These results indicate that cocaine reduces skeletal muscle function by reducing the excitability of muscle and nerve membranes, without significantly affecting neuromuscular transmission, excitation-contraction coupling or contractility.  相似文献   

7.
Wang GM  Song G  Zhang H 《生理学报》2005,57(4):511-516
本文旨在研究电刺激家兔迷走神经诱导的黑-伯(Hering-Breuer,HB)反射中的学习和记忆现象。选择性电刺激家兔迷走神经中枢端(频率10~100Hz,强度20~60μA,波宽0.3ms,持续60s),观察对膈神经放电的影响。以不同频率电刺激家兔迷走神经可模拟HB反射的两种成分,即类似肺容积增大所致抑制吸气的肺扩张反射和类似肺容积缩小所致加强吸气的肺萎陷反射。(1)长时高频(≥40Hz,60s)电刺激迷走神经可模拟呼吸频率减慢,呼气时程延长的肺扩张反射。随着刺激时间的延长,膈神经放电抑制的程度逐渐衰减,表现为呼吸频率的减慢(主要由呼气时程延长所致)在刺激过程中逐渐减弱或消失,显示为适应性或“习惯化”的现象;刺激结束时呼吸运动呈现反跳性增强,表现为一过性的呼气时程缩短,呼吸频率加快,然后才逐渐恢复正常。长时低频(〈40Hz,60s)电刺激迷走神经可模拟呼吸频率加快、呼气时程缩短的肺萎陷反射。随着刺激时间的延长,膈神经放电增强的程度逐渐衰减,同样表现出“习惯化”现象;刺激结束后,膈神经放电不是突然降低,而是继续衰减,表现为呼气时程逐渐延长,呼吸频率逐渐减慢,直至恢复到前对照水平,表现了刺激后的短时增强效应。(2)HB反射的适应性或“习惯化”程度反向依赖于刺激强度和刺激频率,表现为随着刺激强度和频率的增加,膈神经放电越远离正常基线水平,即爿惯化程度减弱。结果表明,家兔HB反射具有“习惯化”这一非联合型学习现象,反映与其有关的呼吸神经元网络具有突触功能的可翅性,呼吸的中枢调控反射具有一定的适应性。  相似文献   

8.
Stimulation of the superior laryngeal nerve (SLN) results in apnea in animals of different species, the mechanism of which is not known. We studied the effect of the GABA(A) receptor blocker bicuculline, given intravenously and intracisternally, on apnea induced by SLN stimulation. Eighteen 5- to 10-day-old piglets were studied: bicuculline was administered intravenously to nine animals and intracisternally to nine animals. The animals were anesthetized and then decerebrated, vagotomized, ventilated, and paralyzed. The phrenic nerve responses to four levels of electrical SLN stimulation were measured before and after bicuculline. SLN stimulation caused a significant decrease in phrenic nerve amplitude, phrenic nerve frequency, minute phrenic activity, and inspiratory time (P < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea during stimulation that often persisted beyond cessation of the stimulus. Bicuculline, administered intravenously or intracisternally, decreased the SLN stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency (P < 0.05). Bicuculline also reduced SLN-induced apnea and duration of poststimulation apnea (P < 0.05). We conclude that centrally mediated GABAergic pathways are involved in laryngeal stimulation-induced apnea.  相似文献   

9.
In anesthetized mongrel dogs we measured the blood flow in the left phrenic artery (Qdi), using an electromagnetic flow probe, before and during supramaximal phrenic nerve stimulation (pacing). This was done at constant respiratory rate (24/min) but at three different stimulation frequencies at a duty cycle of 0.4 (20, 50, and 100 Hz) and at three different duty cycles at a stimulation frequency of 50 Hz (duty cycle = 0.2, 0.4, and 0.8). Qdi was unchanged during diaphragm contraction until transdiaphragmatic pressure (Pdi) was greater than approximately 11 cmH2O, whereafter it began to decrease, reaching zero at Pdi approximately 20 cmH2O. Thus, when Pdi was greater than 21 cmH2O, all flow occurred during relaxation. Qdi averaged over the entire respiratory cycle (Qt) was less at duty cycle = 0.8 than under the other conditions. This was because of decreasing length of relaxation phase rather than a difference of relaxation phase flow (Qr), which was maximal during all conditions of phrenic stimulation. During pacing-induced fatigue, Qt actually rose slightly as Pdi fell. This was due to an increase in contraction phase flow while Qr remained constant. The relationship between Qt and tension-time index was not unique but varied according to the different combinations of duty cycle and stimulus frequency.  相似文献   

10.
To determine the skeletal muscle stimulation parameters that are most important in establishing vasodilation in the microvasculature, I tested whether arteriolar diameter during 2 min of repetitive, short-duration, tetanic skeletal muscle contractions increased with changes in stimulus frequency, stimulation train duration, and contraction frequency. To test this, the diameter of transverse arterioles approximately perpendicular to small bundles of cremaster muscle fibers in situ of anesthetized Golden Syrian hamsters was used as a bioassay system. Arteriolar diameter was measured before and during different stimulation patterns that consisted of a contraction frequency [6, 12, or 24 contractions per minute (cpm)], a stimulation train duration (250, 500, or 750 ms) and a stimulus frequency (4, 8, 10, 15, 20, 30, 40, 60, and 80 Hz). The magnitude of the dilation significantly increased with stimulus frequency but not in a simple linear manner. The average rate of increase was 0.32 +/- 0.02 microm/Hz from 4 to 20 Hz and 0.09 +/- 0.02 microm/Hz from 30 to 80 Hz. The magnitude of the dilation increased significantly with the contraction frequency where the dilation at 6 cpm was significantly smaller than the dilation at 24 cpm across all stimulus frequencies. Changing the train duration from 250 to 750 ms did not significantly affect the magnitude of the dilation. These observations suggest that stimulation parameters are important in determining the magnitude of the microvascular dilation and that the magnitude of the dilation was dependent on both the contraction frequency and stimulus frequency but was independent of train duration.  相似文献   

11.
Intermittent hypoxia (IH), associated with obstructive sleep apnea, initiates adaptive physiological responses in a variety of organs. Little is known about its influence on diaphragm. IH was simulated by exposing rats to alternating 15-s cycles of 5% O2 and 21% O2 for 5 min, 9 sets/h, 8 h/day, for 10 days. Controls did not experience IH. Diaphragms were excised 20-36 h after IH. Diaphragm bundles were studied in vitro or analyzed for myosin heavy chain isoform composition. No differences in maximum tetanic stress were observed between groups. However, peak twitch stress (P < 0.005), twitch half-relaxation time (P < 0.02), and tetanic stress at 20 or 30 Hz (P < 0.05) were elevated in IH. No differences in expression of myosin heavy chain isoforms or susceptibility to fatigue were seen. Contractile function after 30 min of anoxia (95% N2-5% CO2) was markedly preserved at all stimulation frequencies during IH and at low frequencies after 15 min of reoxygenation. Anoxia-induced increases in passive muscle force were eliminated in the IH animals (P < 0.01). These results demonstrate that IH induces adaptive responses in the diaphragm that preserve its function in anoxia.  相似文献   

12.
The relationship between diaphragm electromyogram (EMG), isometric force, and length was studied in the canine diaphragm strip with intact blood supply and innervation under three conditions: supramaximal tetanic (100 Hz) phrenic nerve stimulation (STPS; n = 12), supramaximal phrenic stimulation at 25 Hz (n = 15), and submaximal phrenic stimulation at 25 Hz (n = 5). In the same preparation, the EMG-length relationship was also examined with direct muscle stimulation when the neuromuscular junction was blocked. EMG from three different sites and via two types of electrodes (direct or sewn-in and surface) were recorded during isometric contraction at different lengths. Direct EMGs were recorded from two bipolar electrodes sutured into the strip, one near its central end and the other near its costal end. A third EMG electrode configuration summed potentials from the whole strip by recording potentials between central and costal sites. Surface EMGs were recorded by a bipolar spring clip electrode that made contact with upper and lower surfaces of the muscle strip with light pressure. In all conditions of stimulation with different types of electrodes, all EMGs decreased significantly (P less than 0.05) when muscle length was changed from 50 to 120% of resting length (L0). Minimal and maximal force outputs were observed at 50 and 120% of L0, respectively, in all experiments. The results of this study indicated that the muscle length is a significant variable that affects the EMG recording and that the diaphragmatic EMG may not be an accurate reflection of phrenic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A high-frequency burst of pulses at the onset of a subtetanic train of stimulation allows skeletal muscle to hold force at a higher level than expected from the extra pulses alone because of the catchlike property of muscle. The present study tested the hypothesis that the presence and degree of force increase induced by a high-frequency burst are strongly modulated by the subsequent train frequency. Rat diaphragm muscle strips (studied in vitro at 37 degrees C) underwent two-, three-, or four-pulse bursts [interpulse interval (IPI) of 5 or 10 ms] at the onset of 10- to 50-Hz subtetanic trains. Force was quantified during the train with respect to its peak value (F(peak)), mean value (F(mean)), and force-time integral (F(area)), and it was compared with that produced during subtetanic trains of an equal number of pulses without preceding pulse bursts (Diff-F(peak), Diff-F(mean), Diff-F(area)). F(peak) and F(mean) increased with two-, three-, and four-pulse bursts, and Diff-F(peak) and Diff-F(mean) increased progressively with decreasing frequency of the subtetanic train. F(area), the best reflection of catchlike force augmentation, was increased mainly by the four-pulse bursts with an IPI of 10 ms, and Diff-F(area) was maximal at subsequent train frequencies of 15-25 Hz. The use of incorrect patterns of burst stimulation could also precipitate F(area) decreases, which were observed with the four-pulse, 5-ms IPI paradigm. The time required to reach 80% of maximal force (T(80%)) became shorter for each of the pulse burst stimulation patterns, with maximal reduction of Diff-T(80%) occurring at a subsequent train frequency of 20 Hz in all cases. These data indicate that extra-pulse burst stimulation paradigms need to incorporate the optimal combinations of extra-pulse number, IPI, and the frequency of the subsequent subtetanic train to take greatest advantage of the catchlike property of muscle.  相似文献   

14.
The tetanic force development of the human adductor pollicis muscle was studied under light anesthesia with nitrous oxide, oxygen, and Demerol, by the use of tetanic stimulation of the ulnar nerve at frequencies ranging from 10 to 100 Hz. The time necessary for the tetanic contraction to reach a plateau was longest at frequencies between 15 and 20 Hz. Fusion of tetanus occurred between 40 and 45 Hz. The mean maximal force of 6.92 kg was developed at a mean frequency of approximately 75 Hz. The maximal force was well maintained up to a stimulation frequency of 100 Hz. The results indicate that in lightly anesthetized man, the maximal force is developed at higher stimulation frequencies than those observed in conscious man and that it is well sustained at higher frequencies.  相似文献   

15.
We previously compared the effects of increased respiratory muscle work during whole body exercise and at rest on diaphragmatic fatigue and showed that the amount of diaphragmatic force output required to cause fatigue was reduced significantly during exercise (Babcock et al., J Appl Physiol 78: 1710, 1995). In this study, we use positive-pressure proportional assist ventilation (PAV) to unload the respiratory muscles during exercise to determine the effects of respiratory muscle work, per se, on exercise-induced diaphragmatic fatigue. After 8-13 min of exercise to exhaustion under control conditions at 80-85% maximal oxygen consumption, bilateral phrenic nerve stimulation using single-twitch stimuli (1 Hz) and paired stimuli (10-100 Hz) showed that diaphragmatic pressure was reduced by 20-30% for up to 60 min after exercise. Usage of PAV during heavy exercise reduced the work of breathing by 40-50% and oxygen consumption by 10-15% below control. PAV prevented exercise-induced diaphragmatic fatigue as determined by bilateral phrenic nerve stimulation at all frequencies and times postexercise. Our study has confirmed that high- and low-frequency diaphragmatic fatigue result from heavy-intensity whole body exercise to exhaustion; furthermore, the data show that the workload endured by the respiratory muscles is a critical determinant of this exercise-induced diaphragmatic fatigue.  相似文献   

16.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

17.
The effect of stimulation of afferent mesenteric nerves on tidal volume (VT), phrenic nerve, and external intercostal muscle activities was studied in anesthetized spontaneously breathing cats. Both mechanical distension of the small intestine and electrical stimulation of the mesenteric nerves resulted in an initial inspiratory inhibition of VT followed by a gradual recovery above the prestimulus controls. Changes in VT were accompanied by a depression of phrenic nerve activity and an excitation of external intercostal muscle activity. During the recovery phase of VT, the amplitude of phrenic nerve activity returned only partially, whereas the activity of the external intercostal muscle was greater than the prestimulus controls. In a second group of experiments, brief tetanic stimulation at the beginning of inspiration led to a complete and maintained inhibition of phrenic nerve activity but with a simultaneous excitation of external intercostal muscle activity and without any change in VT; whereas expiratory stimulation caused a decrease in expiratory abdominal muscle activity, without changing the peak amplitude of phrenic nerve activity. The respiratory changes observed with distension of the small intestine were abolished after denervation of the mesenteric plexus. It is concluded that activation of the visceral afferents of the mesenteric region reflexly changes diaphragmatic breathing to intercostal breathing. It is assumed that such a type of breathing pattern may occur in pregnancy and in pathophysiological situations involving splanchnic viscera.  相似文献   

18.
Diaphragmatic function during hypoxemia: neonatal and developmental aspects   总被引:1,自引:0,他引:1  
The effect of acute hypoxemia on diaphragmatic force output was studied in five young (age 4-8 days, wt 1.3-2.2 kg) and five older (age 16-19 days, wt 2.8-3.3 kg), anesthetized, spontaneously breathing piglets. Diaphragmatic force output was assessed by analysis of the transdiaphragmatic pressure (Pdi) generated during an occluded inspiratory effort, at end-expiratory lung volume, triggered by supramaximal transvenous stimulation of both phrenic nerves at frequencies of 20, 30, 50, and 100 Hz. During pressure measurements, the piglets were fitted with a rigid plaster cast covering the abdomen and lower third of the chest to ensure a consistency in diaphragmatic shortening during phrenic nerve stimulation. Pdi was measured under base-line conditions [inspired O2 fractional concentration (FIO2) = 0.50] and after 10 min of hypoxemia induced by breathing 12-14% FIO2. Pdi was significantly less than base line during acute hypoxemia at all frequencies of stimulation in both young and older piglets. The decline in the older piglets' Pdi during hypoxemia was significantly greater than that seen in younger piglets. We conclude that acute hypoxemia impairs the capacity of the developing piglet diaphragm to generate force. Furthermore, our data suggest that the young piglet is more resistant to the depressant effects of hypoxemia when compared to its older counterpart.  相似文献   

19.
The effects of phrenic nerve cooling at 0 degrees C on the nerve and diaphragmatic function were evaluated in dogs. Eleven dogs, anesthetized and mechanically ventilated, were studied. Left diaphragmatic function was assessed by recording the transdiaphragmatic pressure (Pdi) generated during electrical stimulation of the left phrenic nerve at different frequencies (0.5, 30, and 100 Hz). Phrenic nerve stimulations were achieved either directly by electrodes placed around the phrenic nerve above its pericardial course or by intramuscular electrodes placed close to the phrenic nerve endings. Electrical activity of the hemidiaphragm (Edi) was recorded and phrenic nerve conduction time (PNCT) was measured during direct phrenic stimulation. A transpericardial cooling of the nerve, at 0 degrees C, on a length of 1 cm, was performed during 30 min (group A, n = 7) or 5 min (group B, n = 4). After the cooling period, phrenic and diaphragmatic functions were assessed hourly for 4 h (H1-H4). Cooling the phrenic nerve produced a complete phrenic nerve conduction block in all dogs, 100 +/- 10 s after the onset of cold exposure. Conduction recovery time was longer in group A (11 +/- 7 min) than in group B (2 +/- 0.5 min) and PNCT remained increased throughout the study in group A. Furthermore, in group A, Pdi and Edi during direct phrenic stimulation were markedly depressed from H1 to H4. No change in these parameters was noted until H3 during intramuscular stimulation, time at which a significant decrease occurred. By contrast, Pdi and Edi from direct and intramuscular stimulations remained unchanged throughout the study in group B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号