首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have recently shown that both ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) prevent transforming growth factor beta1 (TGF-beta1)-induced hepatocyte apoptosis by modulating the E2F-1/p53/Bax pathway. In addition, activation of glucocorticoid (GR) and mineralocorticoid receptors (MR) inhibits apoptosis in various systems. UDCA induces a ligand-independent activation of the GR, thus potentially regulating a number of targets. In this study, we investigated the role of GR and MR during TGF-beta1-induced hepatocyte apoptosis, and identified additional antiapoptotic targets for UDCA. Our results showed that in primary hepatocytes, TGF-beta1 induced 40-50% decreases in gr and mr mRNA expression (p < 0.01), together with up to 10-fold reductions in their protein levels (p < 0.01). Notably, pretreatment with UDCA resulted in a significant upregulation of nuclear steroid receptors (p < 0.05), which coincided with 2- and 3-fold increases in the level of GR and MR nuclear translocation, respectively, when compared with that of TGF-beta1 alone (p < 0.05). Similarly, TUDCA induced GR and MR nuclear translocations (p < 0.05) and markedly prevented MR protein changes associated with TGF-beta1 (p < 0.05) without affecting GR protein levels. Moreover, when interference RNA was used to inhibit GR and MR, UDCA no longer protected hepatocytes against TGF-beta1-induced apoptosis. In fact, the protective effect of UDCA in TGF-beta1-associated caspase activation decreased from 65 to <10% when GR or MR function was blocked. Finally, the TGF-beta1-induced E2F-1/Mdm-2/p53 apoptotic pathway, normally inhibited by UDCA, was not regulated by the bile acid after GR or MR silencing. These results demonstrate that UDCA protects against apoptosis through an additional pathway that involves nuclear receptors GR and MR as key factors. Further, the E2F-1/Mdm-2/p53 apoptotic pathway appears to be a prime target for UDCA-induced steroid receptor activation.  相似文献   

4.
The therapeutic efficacy of ursodeoxycholic acid (UDCA) has been widely demonstrated in various liver diseases, suggesting that UDCA might protect hepatocytes against common mechanisms of liver damage. A candidate for such protection is oxidative injury induced by reactive oxygen species. This study was designed to assess the effects of UDCA on oxidative injury and antioxidative systems in cultured rat hepatocytes. The viability of the hepatocytes dose-dependently decreased after hydrogen peroxide or cadmium administration. Pretreatment with UDCA significantly prevented this decrease in viability. The amounts of glutathione (GSH) and protein thiol increased significantly, but the activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and catalase were unchanged in UDCA-treated hepatocytes. The mRNA levels of gamma-glutamylcysteine synthetase and metallothionein (MT) were significantly higher in UDCA-treated hepatocytes than in controls. In conclusion, UDCA increased hepatocyte levels of GSH and thiol-containing proteins such as MT, thereby protecting hepatocytes against oxidative injury. Our results provide a new perspective on the hepatoprotective effect of UDCA.  相似文献   

5.
We studied effects of ursodeoxycholic acid (UDCA) (10 and 100 mg/kg b.w.) on the free radical generation, lipid peroxidation and the antioxidant defense system in the liver of rats with oxidative stress caused by gamma-irradiation. Both doses of UDCA normalized the liver parameters enhanced by gamma-irradiation: the content of superoxide anion and carbonyl-containing products of lipid peroxidation (alkanals, alkenals, alkadienals and ketones), the superoxide dismutase activity and the chemiluminescence enhanced by luminol. Only the highest dose of UDCA (100 mg/kg b.w.) decreased the chemiluminescence enhanced by lucigenin in liver microsomes and the hydroxyalkenals content in the liver. UDCA prevented reduced glutathione depletion caused by gamma-irradiation, whereas glutathione-related enzyme activities did not change under the influence of both the UDCA doses as well as gamma-irradiation. Thus, the data obtained suggest that UDCA is a metabolite having the sufficiently effective antioxidant properties.  相似文献   

6.
Bile acids, such as cholic acid (CA) and ursodeoxycholic acid (UDCA) have shown to decrease or increase the enzymatic activity of group IB pancreatic PLA2, depending on the concentration used. Studies suggest that the inhibition of hydrolysis rate of the substrate is due to formation in aqueous phase of a complex between bile acid and PLA2, which is catalytically inert. For this reason, we tested the inhibition of the enzymatic activity of group IIA snake venom PLA2 by bile acids, using an aqueous phase model. In addition, we measured the ability of bile acids to inhibit the toxic effects caused by the mentioned toxin. UDCA and CA inhibited the enzymatic activity of the PLA2 in a competitive mode. Moreover, these compounds inhibited myotoxic, cytotoxic and edema-forming activities induced by the toxin, but UDCA was more efficient than CA. It was demonstrated that bile acids interact directly with this protein by causing slight changes in the intrinsic fluorescence spectra. Preliminary molecular docking studies suggest that bile acids interact with amino acids at the active site of the PLA2 through different interactions, CA showed hydrogen bonds with His48, whereas, UDCA displayed with Asp49. Results obtained herein may turn UDCA and CA into promising models for the development of new molecules with anti-inflammatory and anti-snake venom PLA2 properties.  相似文献   

7.
8.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound.  相似文献   

9.
The oxidized bile acid 7-oxoLCA (7-oxolithocholic acid), formed primarily by gut micro-organisms, is reduced in human liver to CDCA (chenodeoxycholic acid) and, to a lesser extent, UDCA (ursodeoxycholic acid). The enzyme(s) responsible remained unknown. Using human liver microsomes, we observed enhanced 7-oxoLCA reduction in the presence of detergent. The reaction was dependent on NADPH and stimulated by glucose 6-phosphate, suggesting localization of the enzyme in the ER (endoplasmic reticulum) and dependence on NADPH-generating H6PDH (hexose-6-phosphate dehydrogenase). Using recombinant human 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), we demonstrate efficient conversion of 7-oxoLCA into CDCA and, to a lesser extent, UDCA. Unlike the reversible metabolism of glucocorticoids, 11β-HSD1 mediated solely 7-oxo reduction of 7-oxoLCA and its taurine and glycine conjugates. Furthermore, we investigated the interference of bile acids with 11β-HSD1-dependent interconversion of glucocorticoids. 7-OxoLCA and its conjugates preferentially inhibited cortisone reduction, and CDCA and its conjugates inhibited cortisol oxidation. Three-dimensional modelling provided an explanation for the binding mode and selectivity of the bile acids studied. The results reveal that 11β-HSD1 is responsible for 7-oxoLCA reduction in humans, providing a further link between hepatic glucocorticoid activation and bile acid metabolism. These findings also suggest the need for animal and clinical studies to explore whether inhibition of 11β-HSD1 to reduce cortisol levels would also lead to an accumulation of 7-oxoLCA, thereby potentially affecting bile acid-mediated functions.  相似文献   

10.
Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.  相似文献   

11.
U12, one of 20 derivatives synthesized from ursodeoxycholic acid (UDCA), has been found to have anticancer effects in liver cancer cell lines (SMMC-7721 and HepG2) and to protect normal liver cells from deoxycholic acid (DCA) damage (QSG-7701). Its anticancer mechanism was investigated using computer-aided network pharmacology and comparative proteomics. Results showed that its anti-malignancy activities were activated by mTOR/S6K1, cyclinD1/CDK2/4 and caspase-dependent apoptotic signaling pathways in hepatocellular carcinoma cells (HCC). The action of U12 may be similar to that of rapamycin. Animal testing confirmed that U12 exerted better anti-tumor activity than UDCA and had less severe side effects than fluorouracil (5-Fu). These observations indicate that U12 differs from UDCA and other derivatives and may be a suitable lead for the development of compounds useful in the treatment of HCC.  相似文献   

12.
Ursodeoxycholic acid (UDCA) is a bile acid (BA) used for cholesterol gallstone dissolution. Since epidemiological evidence indicates that BAs can be involved in the etiology of colorectal cancer, we investigated the effects of UDCA and its physiologically produced taurine conjugate tauroursodeoxycholic acid (TUDCA) on human lymphocyte cultures in terms of genetic damage in the form of micronuclei (MN) production, cell cycle modifications and induction of apoptosis. With respect to controls, treatment with UDCA (from 10 microg/ml) caused a dose-related increase in MN, whereas TUDCA caused no significant increase (up to 1000 microg/ml). Fluorescence in situ hybridization (FISH) analysis using pancentromeric probes suggested that UDCA exerts aneugenic activity. Bromodeoxyuridine/Hoechst flow cytometry showed that both BA significantly inhibit cell cycle progression (UDCA at 100 microg/ml, and TUDCA, more markedly at 300-1000 microg/ml). Neither UDCA nor TUDCA affected induction of apoptosis, as evaluated by the Annexin-V-Fluos assay. We conclude that UDCA is potentially genotoxic. However, taking into account the characteristics of other physiological BA, our findings are in line with the concept that long-term UDCA treatment may be safely administered. The multi-assay approach reported here could be useful in the toxicological evaluation of newly developed BA analogs as candidates for pharmacological use.  相似文献   

13.
The administration of ursodeoxycholic acid (UDCA) has been reported to improve cholestasis in patients with primary biliary cirrhosis or sclerosing cholangitis. In the present study, we tested the hypothesis that UDCA similarly might reduce cholestasis induced by drugs. Rats were treated with three different drugs reported to induce cholestasis: 17 alpha-ethynylestradiol, alpha-napthylisothiocyanate, and cyclosporine A. UDCA administration (0.4.g/day-1.k-1 before and during administration of the cholestatic drug) did not improve survival, food intake, or serum indicators of cholestasis in any of these three animal models of cholestasis. To the extent that drug-induced cholestasis in rats mimics the human situation, we conclude that UDCA probably will not be beneficial in drug-induced cholestasis in humans.  相似文献   

14.
The effect of chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), tauroursodeoxycholic (TUDCA), cholic (CA), ursocholic (UCA) acids, analogues of CDCA and UDCA with a cyclopropyl ring at C22, C23 (cypro-CDCA and cypro-UDCA) and 23-methylursodeoxycholic acid (MUDCA) on cholesterol 7 alpha-hydroxylase was studied in rat liver microsomes. Cypro-analogues consisted of a mixture of four diasteroisomers, while MUDCA was the racemic mixture of two enantiomers. Each steroid was added to liver microsomes at concentrations ranging from 10 to 200 microM. With the exception of UCA and CA, all the bile acids inhibited cholesterol 7 alpha-hydroxylase activity. The inhibition shown by cypro-CDCA and cypro-UDCA was stronger than that observed with the corresponding natural compounds. 22S,23S cypro-UDCA exhibited an inhibitory effect which was more pronounced than that of the diasteroisomer mixture. The isomer 22R,23S was less effective and decreased cholesterol 7 alpha-hydroxylase activity in a manner comparable to that of UDCA. The effect of CDCA, UDCA and the cyclopropyl analogues was also tested with respect to HMG-CoA reductase and acylCoA cholesterol acyltransferase (ACAT) activities. ACAT was stimulated by the isomer 22S,23S cypro-UDCA but not affected by the other bile acids. No effect was observed as regards HMG-CoA reductase.  相似文献   

15.
Mitochondrially mediated synergistic cell killing by bile acids   总被引:9,自引:0,他引:9  
The accumulation of endogenous bile acids contributes to hepatocellular damage during cholestatic liver disease. To examine the controversy regarding the therapeutic use of ursodeoxycholate (UDCA) in cholestatic patients, we investigated the possible cytoprotection or synergistic effects of UDCA against chenodeoxycholate (CDCA)-induced injury to isolated rat hepatocytes. Our aim was to investigate the role of the mitochondrial permeability transition (MPT) in the mechanism of cytotoxicity caused by UDCA plus CDCA. Although not toxic by itself, UDCA potentiated the mitochondrial depolarization, ATP depletion and cell killing caused by CDCA. Fructose maintained ATP levels and prevented bile acid-induced cell killing. Cyclosporine A (CyA), a potent inhibitor of the MPT, substantially reduced mitochondrial depolarization, ATP depletion and cell killing caused by CDCA. Our results demonstrate that the synergistic cytotoxicity by UDCA plus CDCA is mediated by impairment of mitochondrial function, an event that is expressed via induction of the MPT.  相似文献   

16.
The hydrophilic bile salt ursodeoxycholic acid (UDCA) is a potent inhibitor of apoptosis. In this paper, we further characterize the mechanism by which UDCA inhibits apoptosis induced by deoxycholic acid, okadaic acid and transforming growth factor beta1 in primary rat hepatocytes. Our data indicate that coincubation of cells with UDCA and each of the apoptosis-inducing agents was associated with an approximately 80% inhibition of nuclear fragmentation (P<0.001). Moreover, UDCA prevented mitochondrial release of cytochrome c into the cytoplasm by 70 - 75% (P<0.001), thereby, inhibiting subsequent activation of DEVD-specific caspases and cleavage of poly(ADP-ribose) polymerase. Each of the apoptosis-inducing agents decreased mitochondrial transmembrane potential and increased mitochondrial-associated Bax protein levels. Coincubation with UDCA was associated with significant inhibition of these mitochondrial membrane alterations. The results suggest that the mechanism by which UDCA inhibits apoptosis involves an interplay of events in which both depolarization and channel-forming activity of the mitochondrial membrane are inhibited.  相似文献   

17.
The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication.  相似文献   

18.
A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and “receptor for advanced glycation endproduct” (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis.  相似文献   

19.
目的:观察原发性胆汁性肝硬化(primary biliary cirrhosis,PBC)患者治疗前后血清IL-6表达水平,探索其与熊去氧胆酸(Ursodeoxycholic acid,UDCA)疗效的临床相关性。方法:本研究回顾性纳入自2013年-2015年就诊于第四军医大学西京消化病医院的40例新诊断PBC患者,及40例健康对照者。收集PBC患者治疗前后的相关临床资料和血清样本,采用ELISA方法检测患者血清IL-6表达水平,并进一步分析其临床意义。结果:1)治疗前PBC患者血清IL-6表达水平明显高于健康对照者(P0.001);2)PBC患者在接受UDCA治疗后的第3,6和12个月血清IL-6水平与治疗前相比明显降低(P0.05),且在第3个月时下降最明显。3)无论是依据Paris I标准还是Barcelona标准,结果显示,UDCA应答者与应答不佳者相比其治疗前血清IL-6水平无统计学差异(P=0.373;P=0.409)。但UDCA应答者在治疗3个月时其血清IL-6表达水平比治疗前明显下降(P0.05),而应答不佳者治疗3个月时血清IL-6表达水平与治疗前相比无明显差异(P=0.667;P=0.186)。结论:IL-6可能在PBC发病的免疫机制中发挥着重要的作用。目前尚不能认为PBC患者治疗前血清IL-6表达水平能独立评价UDCA疗效,但是治疗三个月后患者血清IL-6水平下降趋势能够提示PBC患者对UDCA的应答情况。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号