首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution and levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) were measured in rat testicular peritubular and Sertoli cells and in isolated rat pachytene spermatocytes and spermatids. Two Sertoli cell preparations, one containing some germ cells and another that had been osmotically shocked to destroy germ cells, were examined. CRBP and CRABP levels were measured by specific and sensitive radioimmunoassays. Testicular peritubular cell cytosol preparations were found to contain high levels of CRBP (1.48 +/- 0.87 microgram CRBP/mg protein) but CRABP could not be detected. The mean CRBP level in Sertoli cell preparations that contained some germ cells was 0.93 +/- 0.24 microgram CRBP/mg protein; this value was similar to the level of 1.11 +/- 0.20 microgram CRBP/mg protein measured for Sertoli cells free of germ cells. The level of CRABP found in Sertoli cell preparations containing germ cells (0.81 +/- 0.32 microgram CRABP/mg protein) was approximately five times greater than was observed in Sertoli cells free of germ cells (0.16 +/- 0.03 microgram CRABP/mg protein). CRBP and CRABP levels in cultured Sertoli cells were not affected by time in culture for up to five days of culture. Pachytene spermatocytes and spermatids were very enriched in CRABP (0.72 +/- 0.26 microgram CRABP/mg protein for spermatocytes and 0.65 +/- 0.21 microgram CRABP/ml protein for spermatids). A search for a high molecular weight retinol-binding protein did not demonstrate the existence of such a protein in Sertoli cell-conditioned medium. In summary, these studies provide quantitative information about the distribution of the cellular retinoid-binding proteins in the cell types that compose the rat testis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
A study was conducted to determine the levels and distributions of retinoids, retinol-binding protein (RBP), retinyl palmitate hydrolase (RPH), cellular retinol-binding protein (CRBP), and cellular retinoic acid-binding protein (CRABP) in different types of isolated liver cells. Highly purified fractions of parenchymal, fat-storing (stellate), endothelial, and Kupffer cells were isolated in high yield from rat livers. The retinoid content of each fraction was measured by HPLC analysis. RBP, CRBP, and CRABP were measured by sensitive and specific radioimmunoassays, and RPH activity was measured by a sensitive microassay. The concentrations of each parameter expressed per 10(6) parenchymal or fat-storing cells were, respectively: retinoids, 1.5 and 83.9 micrograms of retinol equivalents; RBP, 138 and 7.4 ng; RPH, 826 and 1152 pmol FFA formed hr-1; CRBP, 470 and 236 ng; and CRABP, 5.6 and 8.7 ng. When these data were expressed on the basis of per unit mass of cellular protein, the concentrations of RPH, CRBP, and CRABP in the fat-storing cells, which contain 10-fold less protein than the large parenchymal cells, were seen to be greatly enriched over parenchymal cells. The parenchymal cells contained approximately 9% of the total retinoids, 98% of the total RBP, 90% of the total RPH activity, 91% of the total CRBP, and 71% of the total CRABP found in the liver. The fat-storing cells accounted for approximately 88% of the total retinoids, 0.7% of the total RBP, 10% of the RPH activity, 8% of the total CRBP, and 21% of the CRABP in the liver. The endothelial and Kupffer cell fractions contained very low levels of all of these parameters. Thus, the large and abundant parenchymal cells account for greater than 70% of the liver's RBP, RPH, CRBP, and CRABP; but the much smaller and less abundant fat-storing cells contain the majority of hepatic retinoids and greatly enriched concentrations of RPH, CRBP, and CRABP.  相似文献   

4.
We report the first application of high pressure liquid chromatography (HPLC) in the rapid detection of cellular retinoic acid binding protein (CRABP) and cellular retinol binding protein (CRBP). Cytosols from cultured cells (3T6 and MCF-7) or from tumors (melanoma and ovarian) were labeled with [3H]retinoic acid (30 Ci/mmol) and [3H]retinol (43 Ci/mmol) and analyzed via HPLC employing a 60 cm TSK 3000 sw column. In each case CRABP and CRBP were readily detectable at an elution volume of 22.5 ml, consistent with their molecular weights of 14,600. Identity of the binding protein peaks was established by saturability, specificity, and selective inhibition of binding by an organomercurial. Thus, this method, which resolves CRABP and CRBP in crude mixtures from the majority of cytosolic proteins, should be a valuable tool in the evaluation of vitamin A-binding protein interactions and their biological significance.  相似文献   

5.
The distribution of the cellular retinoic acid-binding protein (CRABP) in some rat tissues has been determined, and the protein has been localized by immunocytochemical techniques in sections from rat testis. In the testis CRABP was found in the seminiferous tubuli with Sertoli cells and the spermatogonia most intensely stained. All other cells of the germinal epithelium appeared largely devoid of CRABP. By use of an enzyme-linked immunosorbent assay CRABP was quantitatively estimated in several tissues and the highest levels were found in testis and eye. Comparisons of the tissue levels of CRABP and of the cellular retinol-binding protein (CRBP) did not reveal any apparent correlation.  相似文献   

6.
A study was conducted to explore the effects of retinoic acid, fed to retinol-deficient rats, on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP). Sensitive and specific radioimmunoassays were employed to measure the levels of both CRBP and CRABP. Two groups of six male rats each were fed a purified retinoid-deficient diet supplemented with either: i) retinyl acetate (control group); or ii) retinoic acid (30 mg/kg diet) (retinol deficient-retinoic acid group). The retinoic acid supplementation was begun after 38 days on the retinoid-deficient diet alone, and was continued for 52-54 days. Analysis of the data indicated that only the CRBP level of the proximal epididymis in the retinol-deficient/retinoic acid group differed significantly from (was lower than) the corresponding control level, at the 1% confidence level. CRABP tissue levels did not differ significantly between the two groups. Thus, a moderately large intake of retinoic acid, as the only source of retinoids, had very little effect on the tissue distribution or levels of either its own cellular binding protein (CRABP) or of CRBP. This study provides further information showing that the tissue levels of the cellular retinoid-binding proteins are highly regulated and maintained in rats, even in the presence of marked changes in retinoid nutritional status.  相似文献   

7.
Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.  相似文献   

8.
Studies were conducted to explore the tissue- and cell-specific regulation of cellular retinoic acid-binding protein (CRABP) expression in the rat. Two studies were carried out. The first explored the regulation of CRABP mRNA levels in selected rat tissues by dietary retinoid status, and the relationship between CRABP mRNA and protein levels in different tissues. The second examined the cellular localization of CRABP expression in the testis. In order to conduct these experiments, a cDNA encoding CRABP was isolated and characterized. The DNA sequence of the coding region had 96% identity with that of the mouse CRABP cDNA and encodes a protein identical to mouse and bovine CRABP. CRABP mRNA and protein levels were quantified in five tissues from normal, retinoid-deficient, and retinol-repleted rats. Tissue CRABP and CRABP mRNA levels were highly correlated (P less than 0.01) indicating that inter-tissue variability of CRABP levels mainly results from regulation of CRABP mRNA levels. Neither CRABP protein nor mRNA levels were affected by retinol deficiency, in marked contrast with results previously demonstrated with cellular retinol-binding protein (CRBP) (J. Lipid Res. 1990. 31: 821-829). 35S-labeled CRABP cRNA probes were used to localize CRABP mRNA within the testis of adult rats by in situ hybridization. CRABP mRNA was localized selectively in the periphery of the seminiferous tubules, primarily in type A spermatogonia. The localization of CRABP mRNA differs from that of CRABP protein, which is known to be enriched in maturing and more mature germinal cells. This difference suggests that CRABP in germ cells may be highly stable, remaining in the maturing germ cells without degradation long after CRABP mRNA levels have declined to very low levels. The specific localization of CRABP mRNA and protein presumably reflects the biological roles of retinoic acid in the development and/or later function of germinal cells.  相似文献   

9.
10.
In the present study we have examined the cellular localization and developmental changes of mRNAs for retinoid-binding proteins in rat testis. We demonstrate that mRNA (0.7 kb) for cellular retinol-binding protein (CRBP) is expressed only in Sertoli cells and peritubular cells. The mRNA for CRBP could not be detected in other testicular cells. In contrast, mRNA for cellular retinoic acid-binding protein (CRABP) was detected primarily in germ cells and to a small extent in tumor Leydig cells. The mRNA for CRABP in germ cells revealed distinct size heterogeneity and three distinct mRNA species were observed (1.0, 1.8, and 1.9 kb), in contrast to previous data for somatic cells where only the 1.0-kb mRNA has been reported. Messenger RNAs for retinoic acid receptor-alpha (RAR alpha) were detected in both somatic and haploid germ cells. The highest level of RAR alpha was seen in Sertoli cells, round spermatids, and tumor Leydig cells. Lower, but distinct, levels were observed in peritubular cells. Furthermore, we observed germ cell-specific species of RAR alpha mRNA (4 kb and approximately 7 kb). The smallest mRNA for RAR alpha (2.7 kb) in somatic cells was absent in germ cells. The levels of mRNAs for the various retinoid-binding proteins in whole testis obtained from rats of various ages confirmed this cellular localization. The mRNAs for CRBP, the small molecular size (2.7 kb) mRNA for RAR alpha (localized to somatic cells), and the 1-kb mRNA for CRABP showed an age-dependent decrease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A novel cellular retinol-binding protein, termed type three (CRBP III), was isolated from eyes of the bigeye of tuna. CRBP III showed a molecular weight of 15,400, an isoelectric point of 4.80, alpha 1-mobility in electrophoresis, and a lambda max of 350 nm. All-trans-retinol, the endogenous ligand, could be competitively displaced by retinoic acid but not by retinal. CRBP III was differentiated from purified piscine and rat cellular retinol-binding proteins (CRBP) and cellular retinoic acid-binding proteins (CRABP) by its amino-acid composition, electrophoretic mobility, fluorescence spectra and ligand-binding specificity.  相似文献   

12.
The levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) have been measured in Sertoli cells maintained under different cultural conditions. Sertoli cells were isolated from prepubertal rats and cultured in a chemically defined medium without or with follicle-stimulating hormone (FSH), insulin, retinol or testosterone added individually or in combinations. The additions were made at the beginning of the culture or 24 h before the cells were subjected to determinations of CRBP and CRABP by radioimmunoassay. No differences were observed either after 1 or 4 days of treatment. The results obtained indicated that the levels of the two retinoid-binding proteins were unchanged in Sertoli cells in response to hormone and/or retinol administration. To rule out the possibility that the Sertoli cells used in our study were unresponsive to the hormones, lactate production by the cells cultured in the presence of FSH or insulin was measured. The amount of lactate produced under hormonal stimulation was significantly higher than the amount produced in absence of the hormones, thus indicating the ability of our Sertoli cells to respond to the hormonal stimulation.  相似文献   

13.
14.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

15.
16.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   

17.
A method for saturation analysis of cellular retinoic acid and retinol binding proteins, CRABP and CRBP, respectively, in cultured cells and human tumor samples, and its application to a retinoic acid resistant subline of the human neuroblastoma LA-N-5 cell line is described. Assessment of retinoid binding was accomplished by incubation of cytosols with increasing concentrations of [3H]retinoid (28-43 Ci/mmol; 1 Ci = 37 GBq) for 24 h. Bound retinoid was separated from free retinoid by adsorption with dextran-coated charcoal. Nonspecific binding was quantitated in parallel incubations which had been treated with p-chloromercuribenzene sulfonate (PCMBS), resulting in selective elimination of sulfhydryl-dependent ligand binding to both CRABP and CRBP. Quantitation was accomplished by Scatchard analysis of specific (PCMBS sensitive) binding. Employing this technique, specific retinoid binding was attributed to the presence of 2S macromolecules which displayed the known properties of CRABP and CRBP, namely ligand specificity, saturability, high ligand affinity, and PCMBS sensitivity. The apparent dissociation constants (Kd) for retinoic acid binding in cytosols prepared from murine 3T6 fibroblasts, rat testes, and a human ovarian tumor were 7, 11, and 35 nM, respectively. These preparations also bound retinol with high affinity, exhibiting Kds of 12, 26, and 48 nM, respectively. A retinoic acid resistant subline of LA-N-5 cells designated LA-N-5-R9 was established by long-term culture in the presence of 10(-6) M retinoic acid. This subline is resistant to the effects of retinoic acid in that it requires a 10-fold higher concentration of retinoic acid for 50% inhibition of growth than the parent line and displays no retinoic acid induced morphologic differentiation. Saturation analysis of CRABP in the parent and resistant subline reveal no significant alteration in either CRABP content or affinity. These results indicate that resistance to retinoic acid induced differentiation in LA-N-5-R9 occurs distal to CRABP binding or that CRABP does not mediate this response to retinoic acid.  相似文献   

18.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

19.
A bovine adrenal cDNA library was constructed and a clone corresponding to cellular retinoic-acid-binding protein (CRABP) mRNA was isolated and sequenced. The insert of the clone corresponds to 75 bp of the 5' untranslated portion, the whole translated and the complete 3' untranslated portion of the bovine CRABP mRNA. A genomic Southern blot, probed with CRABP cDNA, indicated that only one copy of the gene is present in the human genome. Hybridizing bands in restricted chicken and fish DNA were also observed. Using the CRABP cDNA as probe we have located the human CRABP gene to chromosome 3 in hybridizations to mouse-human, hamster-human and rat-human cell hybrids. In situ hybridizations on rat testis cells probed with CRABP and cellular retinol-binding protein antisense mRNA indicate that both proteins are expressed in tubuli cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号