首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homodimeric triosephosphate isomerase (TIM) from Trypanosoma cruzi (TcTIM) and T. brucei (TbTIM) are markedly similar in amino acid sequence and three-dimensional structure. In their dimer interfaces, each monomer has a Cys15 that is surrounded by loop3 of the adjoining subunit. Perturbation of Cys15 by methylmethane thiosulfonate (MMTS) induces abolition of catalysis and structural changes. In the two TIMs, the structural arrangements of their Cys15 are almost identical. Nevertheless, the susceptibility of TcTIM to MMTS is nearly 100-fold higher than in TbTIM. To ascertain the extent to which the characteristics of the interface Cys depend on the dynamics of its own monomer or on those of the adjacent monomer, we studied MMTS action on mutants of TcTIM that had the interface residues of TbTIM, and hybrids that have only one interfacial Cys15 (C15ATcTIM-wild type TbTIM). We found that the solvent exposure of the interfacial Cys depends predominantly on the characteristics of the adjoining monomer. The maximal inhibition of activity induced by perturbation of the sole interface Cys in the C15ATcTIM-TbTIM hybrid is around 60%. Hybrids formed with C15ATcTIM monomers and catalytically inert TbTIM monomers (E168DTbTIM) were also studied. Their activity drops by nearly 50% when the only interfacial Cys is perturbed. These results in conjunction with those on C15ATcTIM-wild type TbTIM hybrid indicate that about half of the activity of each monomer depends on the integrity of each of the two Cys15-loop3 portions of the interface. This could be another reason of why TIM is an obligatory dimer.  相似文献   

2.
The effect of specific residues on the kinetic stability of two closely related triosephosphate isomerases (from Trypanosoma cruzi, TcTIM and Trypanosoma brucei, TbTIM) has been studied. Based on a comparison of their β‐turn occurrence, we engineered two chimerical enzymes where their super secondary β‐loop‐α motifs 2 ((βα)2) were swapped. Differential scanning calorimetry (DSC) experiments showed that the (βα)2 motif of TcTIM inserted into TbTIM (2Tc) increases the kinetic stability. On the other hand, the presence of the (βα)2 motif of TbTIM inserted into TcTIM (2Tb) gave a chimerical protein difficult to purify in soluble form and with a significantly reduced kinetic stability. The comparison of the contact maps of the (βα)2 of TbTIM and TcTIM showed differences in the contact pattern of residues 43 and 49. In TcTIM these residues are prolines, located at the N‐terminal of loop‐2 and the C‐terminal of α‐helix‐2. Twelve mutants were engineered involving residues 43 and 49 to study the effect over the unfolding activation energy barrier (EA). A systematic analysis of DSC data showed a large decrease on the EA of TcTIM (ΔEA ranging from 468 to 678 kJ/mol) when the single and double proline mutations are present. The relevance of Pro43 to the kinetic stability is also revealed by mutation S43P, which increased the free energy of the transition state of TbTIM by 17.7 kJ/mol. Overall, the results indicate that protein kinetic stability can be severely affected by punctual mutations, disturbing the complex network of interactions that, in concerted action, determine protein stability. Proteins 2017; 85:571–579. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The susceptibility to subtilisin of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM) was studied. Their amino sequence and 3D structure are markedly similar. In 36 h of incubation at a molar ratio of 4 TIM per subtilisin, TcTIM underwent extensive hydrolysis, loss of activity, and large structural alterations. Under the same conditions, only about 50% of the monomers of TbTIM were cleaved in two sites. The higher sensitivity of TcTIM to subtilisin is probably due to a higher intrinsic flexibility. We isolated and characterized TbTIM that had been exposed to subtilisin. It exhibited the molecular mass of the dimer, albeit it was formed by one intact and one nicked monomer. Its k(cat) with glyceraldehyde 3-phosphate was half that of native TbTIM, with no change in K(m). The intrinsic fluorescence of nicked TbTIM was red-shifted by 5 nm. The association between subunits was not affected. The TbTIM data suggest that there are structural differences in the two monomers or that alterations of one subunit change the characteristics of the other subunit. In comparison to the action of subtilisin on TIMs from other species, the trypanosomal enzymes appear to be unique.  相似文献   

4.
The amino acid sequences and X-ray structures of homodimeric triosephosphate isomerase from the pathogenic parasites Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM) are markedly similar. In the two TIMs, the side chain of the only interface cysteine (Cys14) of one subunit docks into loop 3 of the other subunit. This portion of the interface is also markedly similar in the two enzymes. Nonetheless, Cys14 of TcTIM is nearly 2 orders of magnitude more susceptible to the thiol reagent methylmethane thiosulfonate (MMTS) than Cys14 of TbTIM. The causes of this difference were explored by measuring the second-order rate constant of inactivation by MMTS (k(2)) under various conditions. At pH 7.4, k(2) in TcTIM is 70 times higher than in TbTIM. The difference decreases to 30 when the amino acid sequence of loop 3 and adjoining residues of TbTIM are conferred to TcTIM (triple mutant). The pK(a) values of the thiol group of the interface cysteine of TcTIM and the triple mutant were 0.7 pH unit lower than in TbTIM. Because this difference could account for the different sensitivity of the enzymes to thiol reagents, we determined the k(2) of inactivation at equal levels of ionization of their interface cysteines. Under these conditions, the difference in k(2) between TcTIM and TbTIM became 8-fold, whereas that of the triple mutant to TbTIM was 1.5 times. The substrate analogue phosphoglycolate did not modify the pK(a) of the thiol group of the interface, albeit it diminished the rate of its derivatization by MMTS. In the presence of phosphoglycolate, under conditions in which the interface cysteines of the enzymes had equal levels of protonation, the difference in k(2) of TcTIM and TbTIM became smaller, whereas k(2) of the triple mutant was almost equal to that of TbTIM. Thus, from measurements of the reactivity of the interface cysteine in various conditions, it was possible to obtain information on the factors that control the dynamics of a portion of the dimer interface.  相似文献   

5.
The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins.  相似文献   

6.
The folding and stability of recombinant homomeric (alpha-only) pyruvate decarboxylase from yeast was investigated. Different oligomeric states (tetramers, dimers and monomers) of the enzyme occur under defined conditions. The enzymatic activity is used as a sensitive probe for structural differences between the active and inactive form (mis-assembled forms, aggregates) of the folded protein. Unfolding kinetics starting from the native protein comprise both the dissociation of the oligomers into monomers and their subsequent denaturation, which could be monitored by stopped-flow kinetics. In the course of unfolding, the tetramers do not directly dissociate into monomers, but via a stable dimeric state. Starting from the unfolded state, a reactivation of homomeric pyruvate decarboxylase requires both refolding to monomers and their correct association to enzymatically active dimers or tetramers. The reactivation yield under the in vitro conditions used follows an optimum behavior.  相似文献   

7.
The reactivation of the homodimeric enzyme triosephosphate isomerase (TPI) was studied in reverse micelles. The enzyme was denatured in conventional aqueous mixtures with guanidine hydrochloride and transferred to reverse micelles formed with cetyltrimethylammonium bromide, hexanol, n-octane and water. In the transfer step, denatured TPI monomers distributed in single micelles, and guanidine hydrochloride was diluted more than 100 times. Under optimal reactivation conditions, 100% of the enzyme activity could be recovered. The rate of appearance of the catalytic activity increased with the concentration of protein, which indicated that catalysis required the formation of the dimer. The rate of TPI reactivation also increased with increasing protein concentration in the system with denatured TPI covalently derivatized at the catalytic site with the substrate analogue 3-chloroacetol phosphate. Thus, reactivation could take place via the formation of dimers composed of an inactive and an active subunit. Reactivation critically depended on the amount of water in the reverse micelles. The plot of the extent of reactivation versus the amount of water (2.5-7.0%) was markedly sigmoidal. Less than 20% reactivation took place with water concentrations below 3.5%, due to the formation (in less than 30 s) of stable inactive structures. The results indicate that reverse micelles provide a useful system to probe the events involved in the transformation of unfolded monomers to polymeric enzymes.  相似文献   

8.
The reversible guanidinium hydrochloride-induced unfolding of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was characterized under equilibrium conditions. The catalytic activity was followed as a native homodimeric functional probe. Circular dichroism, intrinsic fluorescence, and size-exclusion chromatography were used as secondary, tertiary, and quaternary structural probes, respectively. The change in ANS fluorescence intensity with increasing denaturant concentrations was also determined. The results show that two stable intermediates exist in the transition from the homodimeric native enzyme to the unfolded monomers: one (N(2*)) is a slightly more expanded, non-native, and active dimer, and the other is a partially expanded monomer (M) that binds ANS. Spectroscopic and activity data were used to reach a thermodynamic characterization. The results indicate that the Gibbs free energies for the partial reactions are 4.5 (N(2) <==> N(2*)), 65.8 (N(2*) <==> 2M), and 17.8 kJ/mol (M <==> U). It appears that TcTIM monomers are more stable than those found for other TIM species (except yeast TIM), where monomer stability is only marginal. These results are compared with those for the guanidinium hydrochloride-induced denaturation of TIM from different species, where despite the functional and three-dimensional similarities, a remarkable heterogeneity exists in the unfolding pathways.  相似文献   

9.
In the interface of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), one cysteine of each monomer forms part of the intersubunit contacts. The relatively slow derivatization of these cysteines by sulfhydryl reagents induces progressive structural alterations and abolition of catalysis [Garza-Ramos et al. (1998) Eur. J. Biochem. 253, 684-691]. Derivatization of the interface cysteine by 5, 5-dithiobis(2-nitrobenzoate) (DTNB) and methylmethane thiosulfonate (MMTS) was used to probe if events at the catalytic site are transmitted to the dimer interface. It was found that enzymes in the active catalytic state are significantly less sensitive to the thiol reagents than in the resting state. Maximal protection against derivatization of the interface cysteine by thiol reagents was obtained at near-saturating substrate concentrations. Continuous recording of derivatization by DTNB showed that catalysis hinders the reaction of sulfhydryl reagents with the interface cysteine. Therefore, in addition to intrinsic structural barriers, catalysis imposes additional impediments to the action of thiol reagents on the interface cysteine. In TcTIM, the substrate analogue phosphoglycolate protected strongly against DTNB action, and to a lesser extent against MMTS action; in TbTIM, phosphoglycolate protected against the effect of DTNB, but not against the action of MMTS. This indicates that barriers of different magnitude to the reaction of thiol reagents with the interface cysteine are induced by the events at the catalytic site. Studies with a Cys14Ser mutant of TbTIM confirmed that all the described effects of sulfhydryl reagents on the trypanosomal enzymes are a consequence of derivatization of the interface cysteine.  相似文献   

10.
It is generally assumed that the amino acids that exist in all homologous enzymes correspond to residues that participate in catalysis, or that are essential for folding and stability. Although this holds for catalytic residues, the function of conserved noncatalytic residues is not clear. It is not known if such residues are of equal importance and have the same role in different homologous enzymes. In humans, the E104D mutation in triosephosphate isomerase (TIM) is the most frequent mutation in the autosomal diseases named “TPI deficiencies.” We explored if the E104D mutation has the same impact in TIMs from four different organisms (Homo sapiens, Giardia lamblia, Trypanosoma cruzi, and T. brucei). The catalytic properties were not significantly affected by the mutation, but it affected the rate and extent of formation of active dimers from unfolded monomers differently. Scanning calorimetry experiments indicated that the mutation was in all cases destabilizing, but the mutation effect on rates of irreversible denaturation and transition‐state energetics were drastically dependent on the TIM background. For instance, the E104D mutation produce changes in activation energy ranging from 430 kJ mol?1 in HsTIM to ?78 kJ mol?1 in TcTIM. Thus, in TIM the role of a conserved noncatalytic residue is drastically dependent on its molecular background. Accordingly, it would seem that because each protein has a particular sequence, and a distinctive set of amino acid interactions, it should be regarded as a unique entity that has evolved for function and stability in the organisms to which it belongs. Proteins 2014; 82:323–335. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
We characterized by crystallographic, calorimetric and biochemical methods the action of a low molecular weight compound, 3-(2-benzothiazolylthio)-1-propanesulfonic acid (compound 8) that binds to the dimer interface of triosephosphate isomerase from Trypanosoma cruzi (TcTIM) and thereby abolishes its function with a high level of selectivity. The kinetics of TcTIM inactivation by the agent and isothermal titration calorimetry experiments showed that the binding of two molecules of the compound per enzyme is needed for inactivation. The binding of the first molecule is endothermic, and that of the second exothermic. Crystals of TcTIM in complex with one molecule of the inactivating agent that diffracted to a resolution of 2A were obtained. The compound is at the dimer interface at less than 4A from residues of the two subunits. Compound 8 is more effective at low than at high protein concentrations, indicating that it perturbs the association between the two TcTIM monomers. Calorimetric and kinetic data of experiments in which TcTIM was added to a solution of the inactivating agent showed that at low concentrations of the compound, inactivation is limited by binding, whereas at high concentrations of the agent, the events that follow binding become rate-limiting. The portion of the interface of TcTIM that binds the benzothiazole derivative and its equivalent region in human TIM differs in amino acid composition and hydrophobic packing. Thus, we show that by focusing on protein-protein interfaces, it is possible to discover low molecular weight compounds that are selective for enzymes from parasites.  相似文献   

12.
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.  相似文献   

13.
In homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM), cysteine 14 of each the two subunits forms part of the dimer interface. This residue is central for the catalysis and stability of TbTIM. Cys14 was changed to the other 19 amino acids to determine the characteristics that the residue must have to yield catalytically competent stable enzymes. C14A, C14S, C14P, C14T, and C14V TbTIMs were essentially wild type in activity and stability. Mutants with Asn, Arg, and Gly had low activities and stabilities. The other mutants had less than 1% of the activity of TbTIM. One of the latter enzymes (C14F) was purified to homogeneity. Size exclusion chromatography and equilibrium sedimentation studies showed that C14F TbTIM is a monomer, with a k(cat) approximately 1000 times lower and a K(m) approximately 6 times higher than those of TbTIM. In C14F TbTIM, the ratio of the elimination (methylglyoxal and phosphate formation) to isomerization reactions was higher than in TbTIM. Its secondary structure was very similar to that of TbTIM; however, the quantum yield of its aromatic residues was lower. The analysis of the data with the 19 mutants showed that to yield enzymes similar to the wild type, the residue must have low polarity and a van der Waals volume between 65 and 110 A(3). The results with C14F TbTIM illustrate that the secondary structure of TbTIM can be formed in the absence of intersubunit contacts, and that it has sufficient tertiary structure to support catalysis.  相似文献   

14.
The unfolding and dissociation of the tetrameric enzyme fructose-1,6-bisphosphatase from pig kidney by guanidine hydrochloride have been investigated at equilibrium by monitoring enzyme activity, ANS binding, intrinsic (tyrosine) protein fluorescence, exposure of thiol groups, fluorescence of extrinsic probes (AEDANS, MIANS), and size-exclusion chromatography. The unfolding is a multistate process involving as the first intermediate a catalytically inactive tetramer. The evidence that indicates the existence of this intermediate is as follows: (1) the loss of enzymatic activity and the concomitant increase of ANS binding, at low concentrations of Gdn.HCl (midpoint at 0.75 M), are both protein concentration independent, and (2) the enzyme remains in a tetrameric state at 0.9 M Gdn.HCl as shown by size-exclusion chromatography. At slightly higher Gdn.HCl concentrations the inactive tetramer dissociates to a compact dimer which is prone to aggregate. Further evidence for dissociation of tetramers to dimers and of dimers to monomers comes from the concentration dependence of AEDANS-labeled enzyme anisotropy data. Above 2.3 M Gdn.HCl the change of AEDANS anisotropy is concentration independent, indicative of monomer unfolding, which also is detected by a red shift of MIANS-labeled enzyme emission. At Gdn.HCl concentrations higher than 3.0 M, the protein elutes from the size-exclusion column as a single peak, with a retention volume smaller than that of the native protein, corresponding to the completely unfolded monomer. In the presence of its cofactor Mg(2+), the denaturated enzyme could be successfully reconstituted into the active enzyme with a yield of approximately 70-90%. Refolding kinetic data indicate that rapid refolding and reassociation of the monomers into a nativelike tetramer and reactivation of the tetramer are sequential events, the latter involving slow and small conformational rearrangements in the refolded enzyme.  相似文献   

15.
Tetrameric Escherichia coli phosphofructokinase dissociates reversibly on incubation under hydrostatic pressures of 80 MPa and above, yielding inactive dimers and monomers. The transition is dependent upon enzyme concentration and presence of ligands. The substrate, D-fructose 6-phosphate, which bridges the intersubunit interface at the active site, produces a massive stabilization to pressure, whereas ATP, which binds to only one subunit, induces only a mild stabilization. Both the positive allosteric regulator, GDP, and the negative allosteric regulator, phosphoenolpyruvate, whose binding sites lie at the other subunit interface, produce an intermediate effect. Of these ligands, only ATP increases the rate of reactivation after depressurization.  相似文献   

16.
Catalases, although synthesized from single genes and built up from only one type of subunit, exist in heterogeneous form with respect to their conformations and association states in biological systems. This heterogeneity is not of genetic origin, but rather reflects the instability of this oligomeric heme enzyme. To understand better the factors that stabilize the various association states of catalase, we performed studies on the multimeric intermediates that are stabilized during guanidine-hydrochloride- and urea-induced unfolding of bovine liver catalase (BLC). For the first time, we have observed an enzymatically active, folded dimer of native BLC. This dimer has slightly higher enzymatic activity and altered structural properties compared to the native tetramer. Comparative studies of the effect of NaCl, GdmCl, and urea on BLC show that cation binding to negatively charged groups present in amino acid side chains of the enzyme leads to stabilization of an enzymatically active, folded dimer of BLC. Besides the folded dimer, an enzymatically active expanded tetramer and a partially unfolded, enzymatically inactive dimer of BLC were also observed. A complete recovery of native enzyme was observed on refolding of expanded tetramers and folded dimers; however, a very low recovery (maximum of approximately 5%) of native enzyme was observed on refolding of partially unfolded dimers and fully unfolded monomers.  相似文献   

17.
Heterodimers of tyrosyl-tRNA synthetase from Bacillus stearothermophilus have been produced by mutagenesis at the subunit interface. Oppositely charged groups have been engineered into the subunits so that they can form a complementary pair. Wild-type tyrosyl-tRNA synthetase is a symmetrical dimer in which the side chains of the 2 Phe-164 residues interact at the subunit interface. Phe-164 was mutated to Asp in tyrosyl-tRNA synthetase and to Lys in a truncated enzyme (des-(321-419)tyrosyl-tRNA synthetase) which lacks the two tRNA-binding sites, but which can catalyze pyrophosphate exchange. The size difference allows subunit association to be studied by gel filtration chromatography. These changes induce reversible dissociation from active dimers into inactive monomers at pH values which favor ionization at position 164. A mixture of the two mutants near neutral pH is apparently fully active in pyrophosphate exchange and consists of a heterodimer of [Asp164]tyrosyl-tRNA synthetase and [Lys164]des-(321-419)tyrosyl-tRNA synthetase. Despite having only one binding site for tRNA, heterodimer has full aminoacylation activity at high concentrations of tyrosine. We have therefore produced a family of dimers that differ in stability near neutral pH. This novel approach using protein engineering allows specific dimerization of subunits of the same size that have different defined mutations, each subunit being tagged by the charge. Such hybrid proteins can be used to study subunit interaction.  相似文献   

18.
The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.  相似文献   

19.
Sedimentation equilibrium analysis demonstrated that preparations of bovine lipoprotein lipase contain a complex mixture of dimers and higher oligomers of enzyme protein. Enzyme activity profiles from sedimentation equilibrium as well as from gel filtration indicated that activity is associated almost exclusively with the dimer fraction. To explore if the enzyme could be dissociated into active monomers, 0.75 M guanidinium chloride was used. Sedimentation velocity measurements demonstrated that this treatment led to dissociation of the lipase protein into monomers. Concomitant with dissociation, there was an irreversible loss of catalytic activity and a moderate change in secondary structure as detected by circular dichroism. The rate of inactivation increased with decreasing concentrations of active lipase, but addition of inactive lipase protein did not slow down the inactivation. This indicates that reversible interactions between active species precede the irreversible loss of activity. The implication is that dissociation initially leads to a monomer form which is in reversible equilibrium with the active dimer, but which decays rapidly into an inactive form, and is therefore not detected as a stable component in the system.  相似文献   

20.
The foldon domain constitutes the C-terminal 30 amino acid residues of the trimeric protein fibritin from bacteriophage T4. Its function is to promote folding and trimerization of fibritin. We investigated structure, stability and folding mechanism of the isolated foldon domain. The domain folds into the same trimeric beta-propeller structure as in fibritin and undergoes a two-state unfolding transition from folded trimer to unfolded monomers. The folding kinetics involve several consecutive reactions. Structure formation in the region of the single beta-hairpin of each monomer occurs on the submillisecond timescale. This reaction is followed by two consecutive association steps with rate constants of 1.9(+/-0.5)x10(6)M(-1)s(-1) and 5.4(+/-0.3)x10(6)M(-1)s(-1) at 0.58 M GdmCl, respectively. This is similar to the fastest reported bimolecular association reactions for folding of dimeric proteins. At low concentrations of protein, folding shows apparent third-order kinetics. At high concentrations of protein, the reaction becomes almost independent of protein concentrations with a half-time of about 3 ms, indicating that a first-order folding step from a partially folded trimer to the native protein (k=210 +/- 20 s(-1)) becomes rate-limiting. Our results suggest that all steps on the folding/trimerization pathway of the foldon domain are evolutionarily optimized for rapid and specific initiation of trimer formation during fibritin assembly. The results further show that beta-hairpins allow efficient and rapid protein-protein interactions during folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号