首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L(-1) glucose, supplemented with 5 g L(-1) yeast extract and 3 g L(-1) peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h(-1), which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2' Intalox ceramic saddles, the oscillations were attenuated and quasi-steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L(-1), indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation.  相似文献   

2.
以1株能够直接利用菊糖产乙醇的酿酒酵母L610为出发菌株,对其利用菊糖生产乙醇的发酵条件进行了一系列研究。结果表明,L610最适乙醇发酵温度为37℃,且40℃高温发酵对其产乙醇能力无显著影响;L610对酸性发酵环境有良好的耐受性,当发酵液p H值降至3.5时,其糖醇转化率及乙醇产量仍保持较高水平;以0.025~0.10 vvm的通气量通气12 h有利于L610发酵菊糖产乙醇;L610对350 g/L的高浓度菊糖有良好的转化率,乙醇浓度和生产强度分别达到129 g/L和1.35 g/(L·h);当直接以300 g/L菊芋粗粉为唯一底物进行发酵时,L610发酵产乙醇浓度达到89.6 g/L,为理论产量的78.1%。本研究所取得的成果为酿酒酵母一步法发酵菊芋生产乙醇的工业化发展提供参考。  相似文献   

3.
【目的】本论文研究酿酒酵母srp4039突变基因对酵母细胞异丁醇耐受性的影响。【方法】首先,以酿酒酵母野生型W303-1A和突变株EMS39染色体DNA为模板克隆野生型SRP40基因和srp4039突变基因;然后,将野生型SRP40基因和srp4039突变基因分别连接到质粒YCplac22上,构建质粒YCplac22-SRP40和YCplac22-srp4039。将质粒YCplac22-SRP40、YCplac22-srp4039以及YCplac22空质粒分别转化入野生型酿酒酵母W303-1A中,分别得到W303-1A-SRP40工程菌、W303-1A-srp4039工程菌和W303-1A-control工程菌。将3株工程菌分别置于含1.0%异丁醇、1.3%异丁醇、8.0%乙醇和0.5%异戊醇的CM培养基中进行发酵,测定细胞密度(OD600)和生长情况,并计算2–10 h的比生长速率(μ)。将3株工程菌于55°C热激4 min后做稀释...  相似文献   

4.
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.  相似文献   

5.
[目的]法尼醇(FOH,C15H26O)是一种具有芳香气味的非环状倍半萜醇,被广泛应用于化妆品和医学药物的工业化生产,也可作为航空燃料的理想替代品.具有食品级安全性的酿酒酵母细胞能够合成内源性法尼醇,但其产量很低,无法满足工业生产的需要.因此,需要采用代谢工程手段,改造法尼醇合成途径,以有效提高法尼醇在酿酒酵母中的产量...  相似文献   

6.
The carcinogenicity of aniline-based aromatic amines is poorly reflected by their activity in short-term mutagenicity assays such as the Salmonella typhimurium reverse mutation (Ames) assay. More information about the mechanism of action of such carcinogens is needed. Here we report the effects on DEL recombination in Saccharomyces cerevisiae of the carcinogen 2,4-diaminotoluene and its structural isomer 2,6-diaminotoluene, which is reported to be non-carcinogenic. Both compounds are detected as equally mutagenic in the Salmonella assay. In the absence of any external metabolizing system both compounds were recombinagenic in the DEL assay, with the carcinogen being a more potent inducer of deletions than the non-carcinogen. In the presence of Aroclor-induced rat liver S9, however, the carcinogen 2,4-diaminotoluene became a 2-fold more potent inducer of deletions, and the non-carcinogen 2,6-diaminotoluene was rendered less toxic and no induced recombination was observed. 2,4-Diaminotoluene is distinguished from its non-carcinogen analog in the DEL assay, therefore, on the basis of a preferential activation of the carcinogen in the presence of a rat liver microsomal metabolizing system. Free radical species are produced by several carcinogens and have been implicated in carcinogenesis. We further investigated whether exposure of yeast to either 2,4-diaminotoluene or 2,6-diaminotoluene resulted in a rise in intracellular free radical species. The effects of the free radical scavenger N-acetylcysteine on toxicity and recombination induced by the two compounds and intracellular oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate were studied. Both 2,4- and 2,6-diaminotoluene produced free radical species in yeast, indicating that the reason for the differential activity of the compounds for induced deletions is not reflected in any difference in the production of free radical species.  相似文献   

7.
Redox cofactors play a pivotal role in coupling catabolism with anabolism and energy generation during metabolism. There exists a delicate balance in the intracellular level of these cofactors to ascertain an optimal metabolic output. Therefore, cofactors are emerging to be attractive targets to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol production, while decreasing mitochondrial NADH lowered ethanol production. However, when these reactions were coupled with NADPH production, the metabolic changes were more moderated. The direct consequence of these perturbations could be seen in the shift of the intracellular concentrations of the cofactors. The changes in product profile and intracellular metabolite levels were closely linked to the ATP requirement for biomass synthesis and the efficiency of oxidative phosphorylation, as estimated from a simple stoichiometric model. The results presented here will provide valuable insights for a quantitative understanding and prediction of cellular response to redox-based perturbations for metabolic engineering applications.  相似文献   

8.
9.
Global gene expression of two strains of Saccharomyces cerevisiae, one recombinant (P+), accumulating large amounts of an intracellular protein Superoxide Dismutase (SOD) and one non-recombinant (P−) which does not contain the recombinant plasmid, were compared in batch culture during diauxic growth when cells were growing exponentially on glucose, when they were growing exponentially on ethanol, and in the early stationary phase when glycerol was being utilized.When comparing the gene expression for P− (and P+) during growth on ethanol to that on glucose (Eth/Gluc), overexpression is related to an increase in consumption of glycerol, activation of the TCA cycle, degradation of glycogen and metabolism of ethanol. Furthermore, 97.6% of genes (80 genes) involved in the central metabolic pathway are overexpressed. This is similar to that observed by DeRisi et al. [DeRisi, J.L., Iyer, V.R. & Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.] but very different from was observed for Metabolic Flux Analysis (MFA), where the specific growth rate is lowered to ca. 40%, the fluxes in the TCA cycle are reduced to ca. 40% (to 30% in P+), glycolysis is reduced to virtually 0 and protein synthesis to ca. 50% (to 40% in P+). Clearly it is not possible to correlate in a simple or direct way, quantitative mRNA expression levels with cell function which is shown by the Metabolic Flux Analysis (MFA).When comparing the two strains in the 3 growth stages, 4 genes were found to be under or overexpressed in all cases. The products of all of these genes are expressed at the plasma membrane or cell wall of the yeast. While comparing the strains (P+/P−) when growing on glucose, ethanol and in the early stationary phase, many of the genes of the central metabolic pathways are underexpressed in P+, which is similar to the behaviour of the metabolic fluxes of both strains (MFA). Comparing the gene expression for P− (and to some extent P+) during the early stationary phase to growth on ethanol (Stat/Eth), underexpression is generalized. This shows that the switch in metabolism between ethanol and early stationary phases has an almost instantaneous effect on gene expression but a much more retarded effect on metabolic fluxes and that the “early stationary” phase represents a “late ethanol” phase from the metabolic analysis point of view since ethanol is still present and being consumed although at a much slower rate.  相似文献   

10.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems.  相似文献   

11.
The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras–cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
李明光  姜勇  蔡建辉 《微生物学报》2019,59(7):1232-1240
酿酒酵母(以下简略为酵母)作为寿命分析模型广泛应用于寿命研究领域。酵母寿命分析方法有两种,分别是复制型酵母寿命分析法和时序型酵母寿命分析法。目前,通过酵母寿命分析模型已识别出包括SIR2在内的多个寿命调节基因。SIR2是目前较好的被确立起来的寿命调节基因,具有NAD依赖型脱乙酰化酶的活性,从原核生物到真核生物都有良好的保守性。Sirtuins (Sir2蛋白家族的总称)在细胞内具有功能上的多样性,其中包括对于压力耐受的调节、基因转录的调节、代谢通路的调节以及寿命调节作用等。Sir2是Sirtuins家族最早发现的成员,其功能是参与异染色质结构域转录的沉默调节,同时还参与复制型酵母寿命的调节。已证明,SIR2的缺失会缩短酵母的寿命,基因表达的增高会延长寿命。Sir2的高等真核生物的同源蛋白也被证实参与衰老相关疾病的调节。本文中,我们将阐述Sir2以及Sir2的酵母同源蛋白Hst1-Hst4的功能,以及由它们调节的酵母寿命。  相似文献   

13.
【目的】在酿酒酵母中异源表达双孢蘑菇来源的酪氨酸酶基因PPO2,并研究酪氨酸酶在酿酒酵母胞内及胞外的酶学特性。【方法】提取双孢蘑菇总RNA,通过RT-PCR克隆酪氨酸酶基因PPO2,构建表达载体pSP-G1-PPO2,并转化至酿酒酵母进行表达,采用镍亲和层析纯化蛋白并研究其酶学性质。【结果】在酿酒酵母中正确表达了大小为65 kDa的酪氨酸酶蛋白。重组酶能催化底物酪氨酸产生黑色素。体外活性测定表明,酪氨酸酶催化最适温度为45°C,以酪氨酸和多巴为底物时最适pH分别为7.0和8.0。在酿酒酵母中测得底物酪氨酸浓度低于2.5 mg/mL时,黑色素的产量与底物浓度呈现正相关性。【结论】来源于双孢蘑菇的酪氨酸酶基因PPO2在酿酒酵母中成功表达,重组酶具有良好的酶学特性。利用酪氨酸酶产物黑色素的产量与底物浓度呈现正相关性这一特性,可将其作为细胞酪氨酸产量的传感器,为高通量筛选酪氨酸高产菌株提供了思路。  相似文献   

14.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

15.
Summary We report here the isolation of temperature-sensitive mutants of the yeast Saccharomyces cerevisiae which exhibit cdc phenotypes. The recessive mutations defined four complementation groups, named ore1, ore2, ore3 and ore4. At the non-permissive temperature, strains bearing these mutations arrested in the G1 phase of the cell cycle. The wild-type allele of the gene altered in ore2 mutants was cloned. The nucleotide sequence of a fragment which can complement the mutation showed the presence of an open reading frame capable of encoding a protein with 286 amino acid residues. The deduced amino acid sequence showed 25% identity with that of the Escherichia coli 1-pyrroline-5-carboxylate reductase, an enzyme of the pathway for the biosynthesis of proline. The ore2 mutants, correspondingly, were found to be capable of growing at the non-permissive temperature on a synthetic medium supplemented with proline. In addition, the chromosomal location of the gene and its restriction map were compatible with those previously reported for the PRO3 gene which encodes the S. cerevisiae 1-pyrroline-5-carboxylate reductase.  相似文献   

16.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

17.
18.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

19.
The intracellular metabolic profile characterization of Saccharomyces cerevisiae throughout industrial ethanol fermentation was investigated using gas chromatography coupled to time-of-flight mass spectrometry. A total of 143 and 128 intracellular metabolites in S. cerevisiae were detected and quantified in continuous and batch fermentations, respectively. The two fermentation processes were both clearly distinguished into three main phases by principal components analysis. Furthermore, the levels of some metabolites involved in central carbon metabolism varied significantly throughout both processes. Glycerol and phosphoric acid were principally responsible for discriminating seed, main and final phases of continuous fermentation, while lactic acid and glycerol contributed mostly to telling different phases of batch fermentation. In addition, the levels of some amino acids such as glycine varied significantly during both processes. These findings provide new insights into the metabolomic characteristics during industrial ethanol fermentation processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
陈献忠  肖艳  沈微  樊游 《微生物学报》2016,56(6):922-931
【目的】以淀粉为原料的乙醇发酵工艺仍然是当前燃料乙醇的主要生产方式。然而,一些原料中含有的果胶物质不仅降低了乙醇产率,而且会导致醪液粘度增大,从而会进一步影响传质和传热、增加设备负担等。构建能够自主降解果胶质的重组酿酒酵母并应用于燃料乙醇生产是值得探索的领域。【方法】论文将来源于黑曲霉的果胶酯酶基因克隆于α因子信号肽下游并通过酵母α-凝集素C-端蛋白的介导构建了在细胞表面锚定表达果胶酯酶的重组酿酒酵母PE。【结果】重组酵母的果胶酯酶表达水平达到2.6 U/g(菌体湿重),并进一步鉴定了重组果胶酯酶性质。以甘薯粉为原料的同步糖化发酵实验中,重组酵母PE的乙醇浓度和乙醇转化率分别达到95 g/L和88.1%,与出发菌株相比提高了2.2%。更重要的是,表面展示果胶酯酶能够显著降低发酵过程中的发酵液粘度。【结论】通过在工业酿酒酵母表面展示表达果胶酯酶不仅能够提高糖化酶等的作用效果和酿酒酵母的代谢能力,而且能够显著降低乙醇生产过程中发酵液的粘度,将对工业规模乙醇生产在降低设备负担、节约能耗方面具有一定的潜在价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号