首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alkaline treatment of eucalyptus hardwood kraft pulp with 10% NaOH yielded 6-8% xylan. The acetylation of the extracted xylan was carried in DMAC/LiCl/pyridine system to obtain a series of xylan acetates with different degrees of substitution (DS). Structure elucidation of xylan and xylan acetate was obtained by 1H and 13C NMR spectroscopy and other homonuclear and heteronuclear 2D-NMR techniques. Inverse-gated 13C NMR was employed to determine the DS of xylan acetate. Furthermore, results also revealed equal reactivities at the C-2 and C-3 positions of xylan towards acetylation. Thermal stability, solubility behavior and nanofiber formation of xylan acetate were influenced by its DS values. The mechanical properties of xylan acetate propionate were also investigated.  相似文献   

3.
A gene expressing xylanase activity was isolated from a genomic library of Thermotoga sp. strain FjSS3-B.1. The sequence of the gene shows that it encodes a single domain, family 10 xylanase. The recombinant enzyme has extremely high thermal stability, activity over a relatively broad pH range, and activity on Pinus radiata kraft pulp.  相似文献   

4.
This paper examines the influence of the degree of refining of different pulps, produced from olive trimmings and eucalyptus wood, on various physical properties. Corresponding pulps were obtained by means of different cooking processes. Pulp from olive trimmings was obtained by means of an organosolv process and pulp from eucalyptus was obtained by means of a kraft process. Pulp from olive trimmings exhibited a lower specific surface area, water retention volume, breaking length, stretch and burst index, but a higher porosity, than eucalyptus pulp. On the other hand, the same degree of refining was achieved with less energy for olive pulp than for eucalyptus pulp. Mixed pulp from olive trimmings and eucalyptus provided paper sheets with acceptable physical properties but with reduced refining energy costs relative to eucalyptus pulp alone.  相似文献   

5.
The suhB gene is located at 55 min on the Escherichia coli chromosome and encodes a protein of 268 amino acids. Mutant alleles of suhB have been isolated as extragenic suppressors for the protein secretion mutation (secY24), the heat shock response mutation (rpoH15), and the DNA synthesis mutation (dnaB121) (K. Shiba, K. Ito, and T. Yura, J. Bacteriol. 160:696-701, 1984; R. Yano, H. Nagai, K. Shiba, and T. Yura, J. Bacteriol. 172:2124-2130, 1990; S. Chang, D. Ng, L. Baird, and C. Georgopoulos, J. Biol. Chem. 266:3654-3660, 1991). These mutant alleles of suhB cause cold-sensitive cell growth, indicating that the suhB gene is essential at low temperatures. Little work has been done, however, to elucidate the role of the product of suhB in a normal cell and the suppression mechanisms of the suhB mutations in the aforementioned mutants. The sequence similarity shared between the suhB gene product and mammalian inositol monophosphatase has prompted us to test the inositol monophosphatase activity of the suhB gene product. We report here that the purified SuhB protein showed inositol monophosphatase activity. The kinetic parameters of SuhB inositol monophosphatase (Km = 0.071 mM; Vmax = 12.3 mumol/min per mg) are similar to those of mammalian inositol monophosphatase. The ssyA3 and suhB2 mutations, which were isolated as extragenic suppressors for secY24 and rpoH15, respectively, had a DNA insertion at the 5' proximal region of the suhB gene, and the amount of SuhB protein within mutant cells decreased. The possible role of suhB in E. coli is discussed.  相似文献   

6.
beta-Mannanase (endo-1,4-beta-mannanase; mannan endo-1,4-beta-mannosidase; EC 3.2.1.78) catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannans, including hemicellulose polysaccharides, which are among the major components of plant cell walls. The gene man1, which encodes beta-mannanase, of the filamentous fungus Trichoderma reesei was isolated from an expression library by using antiserum raised towards the earlier-purified beta-mannanase protein. The deduced beta-mannanase consists of 410 amino acids. On the basis of hydrophobic cluster analysis, the beta-mannanase was assigned to family 5 of glycosyl hydrolases (cellulase family A). The C terminus of the beta-mannanase has strong amino acid sequence similarity to the cellulose binding domains of fungal cellulases and is preceded by a serine-, threonine-, and proline-rich region. Consequently, the beta-mannanase is probably organized similarly to the T. reesei cellulases, having a catalytic core domain separated from the substrate-binding domain by an O-glycosylated linker. Active beta-mannanase was expressed and secreted by using the yeast Saccharomyces cerevisiae as the host. The results indicate that the man1 gene encodes the two beta-mannanases with different isoelectric points (pIs 4.6 and 5.4) purified earlier from T. reesei.  相似文献   

7.
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a beta-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85 degrees C and pH 6.0 and was extremely thermostable at 70 degrees C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable beta-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.  相似文献   

8.
In this work the application of different hemicellulosic derivatives including different degrees of substitution (DS) cationic hemicelluloses and carboxymethyl hemicelluloses in sulfate kraft pulp were investigated in detail. It was found that cationic hemicelluloses and carboxymethyl hemicelluloses could improve the physical properties of hand sheets, while the cooperation of cationic hemicelluloses and carboxymethyl hemicelluloses could enhance sharply the physical properties of hand sheets. When the dosages of cationic hemicelluloses with DS of 0.37 and carboxymethyl hemicelluloses with DS of 0.35 were 1.0% and 1.0% (based on dry pulp weight), respectively, the physical properties of hand sheets was significantly improved, breaking lengthen and tear index of hand sheets increased by 21.1% and 54.6% compared with the control hand sheets without any additives added. The fiber intertexture of the hand sheets was observed by SEM. The results indicated that hemicelluloses could be used as the source for the production of wet-end additives in papermaking, which might represent an important strategy for sustainable use of the agricultural residue.  相似文献   

9.
Lignin in kraft pulp was extracted by enzymatic hydrolysis of the carbohydrates, acidolysis with dioxane-water-HCl (conventional method), and acidolysis with acetic acid-water-ZnCl2. The latter method was shown to extract lignin with a better yield than for conventional acidolysis and with a much lower content in impurities than for enzymatic hydrolysis. It was confirmed by 13C NMR analysis of the lignin samples that conventional hydrolysis modified the lignin polymer, causing the cleavage of some aryl-ether linkages. The cleavage was also observed on a model compound submitted to the same extraction conditions. In that respect, the acetic acid-water-ZnCl2 method was less damaging and consequently more suitable for analytical purposes.  相似文献   

10.
11.
Fibre-bound and isolated galactoglumanans from pine-wood and pine kraft pulp were hydrolysed with purified mannanases from Trichoderma reesei and Bacillus subtilis. The isolated galactoglucomannans from both wood and pulp could be hydrolysed fairly extensively with both enzymes. In addition to mixed oligomers, the fungal mannase produced mannobiose as the main hydrolysis product whereas the bacterial mannanase produced mannobiose, mannotriose and mannotetraose. Both enzymes hydrolysed the native galactoglucomannan in finely ground pinewood, whereas galactoglucomannan in pine kraft pulp was only hydrolysed by the T. ressei mannanase. Thus, mannanases exhibit different specificities on fibre-bound, modified substrates. In spite of the high enzyme loading, the degree of hydrolysis of fibre-bound substrates did not exceed 10% of the theoretical, probably due to poor accessibility of the substrates. Correspondence to: M. Rättö  相似文献   

12.
The celB gene of Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli to create a recombinant biocatalyst for hydrolyzing lignocellulosic biomass at high temperature. The GH5 domain of CelB hydrolyzed 4-nitrophenyl-β-d-cellobioside and carboxymethyl cellulose with optimum activity at pH 4.7-5.5 and 80 °C. The recombinant GH5 and CBM3-GH5 constructs were both stable at 80 °C with half-lives of 23 h and 39 h, respectively, and retained >94% activity after 48 h at 70 °C. Enzymatic hydrolysis of corn stover and cellulose pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate showed that GH5 and CBM3-GH5 primarily produce cellobiose, with product yields for CBM3-GH5 being 1.2- to 2-fold higher than those for GH5. Confocal microscopy of bound protein on cellulose confirmed tighter binding of CBM3-GH5 to cellulose than GH5, indicating that the enhancement of enzymatic activity on solid substrates may be due to the substrate binding activity of CBM3 domain.  相似文献   

13.
A thermoalkalophilic and cellulase-free xylanase produced from Arthrobacter sp. MTCC 5214 by solid-state fermentation using wheat bran as a carbon source was evaluated for prebleaching of kraft pulp. The UV absorption spectrum of the compounds released by enzyme treatment showed a characteristic peak at 280 nm, indicating the presence of lignin in the released colouring matter. Enzymatic prebleaching of kraft pulp showed 20% reduction in kappa number of the pulp without much change in viscosity. Enzymatic treatment reduced the amount of chlorine by 29% without any decrease in brightness. The viscosity of xylanase treated pulp was 4.0 p, whereas the viscosity of the pulp treated exclusively with chlorine was 4.1 p.  相似文献   

14.
The sequence coding for carboxymethylcellulase (CMCase, CelC) was isolated from the DNA of Salmonella typhimurium UR1. Comparison between the deduced amino acid sequence of CelC (368 amino acid residues, Molecular mass 41 kDa) and that of the previously published CMCase revealed that this enzyme belongs to the cellulase family 8 and D. The protein was overproduced in Escherichia coli using T7 expression system, and its activity was confirmed by CMC-SDS-PAGE. When the overexpressed CelC protein was tested on cellulose-type substrates, the recombinant protein is able to degrade cellulose-type substrates, such as CM-cellulose, xylan, avicel, lichenan, and laminarin. Optimal temperature and pH for enzyme activity were found to be 50 degrees C and pH 6.5, respectively.  相似文献   

15.
The extracellular productions of beta-xylanase, beta-xylosidase, beta-glucosidase, beta-mannanase, arabinosidase, alpha-glucuronidase, alpha-galactosidase and Fpase from Bacillus pumilus CBMAI 0008 were investigated with three different xylan sources as substrate. The enzymatic profiles on birchwood, Eucalyptus grandis and oat were studied at alkaline and acidic pH conditions. B. pumilus CBMAI 0008 grown on the three carbon sources produced mainly beta-xylanase. At pH 10, the levels of xylanase were 328, 160 and 136 U/ml, for birch, oat and E. grandis, respectively. beta-Mannanase production was induced on E. grandis (5 U/ml) and arabinofuranosidase on oat (5 U/ml). Although small quantities of alpha-glucuronidase had been produced at pH 10, activity at pH 4.8 was 1.5 U/ml, higher than observed for Aspergillus sp. in literature reports. Preliminary assays carried out on E. grandis kraft pulp from an industrial paper mill (RIPASA S.A. Celulose e Papel, Limeira, SP, Brazil) showed a reduction of 0.3% of chlorine use in the pulp treated with the enzymes, resulting in increased brightness, compared to conventional bleaching. The enzymes were more efficient if applied before the initial bleaching sequence, in a non-pre-oxygenated pulp.  相似文献   

16.
Effects of surfactants on the enzymatic bleaching of kraft pulp by xylanase   总被引:1,自引:0,他引:1  
A xylanase was purified from a commercial crude xylanase, Pulpzyme HC, and used for the bleaching of kraft pulp in the absence or in the presence of nonionic surfactants, Tween 20, Tween 80, and Igepal C930. The purified xylanase has a molecular weight of 23,500 as determined by a reducing SDS-PAGE. Tween 20 was most effective to enhance the efficiency of the enzymatic bleaching of kraft pulp by xylanase.  相似文献   

17.
18.
An extracellular xylanase produced under optimal conditions by a thermophilic strain of Bacillus sp. XTR-10 was evaluated for its potential application in biobleaching of wood kraft pulp. Spectrophotometric analysis showed considerable release of lignin derived compounds and chromophoric material by the xylanase treated pulp samples. Xylanase was found to be effective in the liberation of reducing sugars in the pulp filtrates with increment in enzyme dose and reaction time. Eight hours pretreatment with 40 IU of xylanase/g of dry pulp resulted in 16.2% reduction of kappa number with 25.94% ISO increase in brightness as compared to the control. The same treatment slightly lowered the tensile strength and burst index, however. Enzyme pretreatment of the pulp saved 15% active chlorine charges in single step and 18.7% in multiple steps chemical bleaching with attainment of brightness at the level of the control. These results indicate the potential of enzymatic pretreatment of pulp for reduction in environmental discharge of hazardous waste from the pulp and paper industry.  相似文献   

19.
20.
Medium optimization was carried out to enhance laccase production from a novel Rheinheimera species, isolated from industrial effluent. Out of the 15 variables tested by Placket–Burman design (PBD)—yeast extract, soyabean meal, and peptone were the positively significant ones, enhancing laccase production. Both simple and complex sugars showed a negative effect on laccase production. Central composite design (CCD) of experiments, using the three positively significant variables in combinations, showed that laccase production was not affected by molar carbon, molar nitrogen levels or molar C/N ratio. Maximum laccase yield of 2.5 × 105 nkat L?1, 31 fold enhancement over the unoptimized medium, was achieved when soyabean meal (0.6%) was used alone as medium showing that laccase production was substrate dependent. Laccase was used, in the presence of 2 mM ABTS, for the biobleaching of eucalyptus kraft pulp resulting in kappa number reduction by 20% and brightness increase by 2.9%. Biobleaching improved further by sequential application of an alkalophilic xylanase (X) and laccase‐ABTS system (LAS) that decreased kappa number by 10, 15, and 35%, increased brightness by 2.7, 3.2, and 5.9% as compared to X treated, LAS treated and untreated control, respectively. XLAS treatment resulted in 15, 13, 10.9% increase in burst factor, tear factor, and viscosity with a 20% reduced consumption of elemental chlorine and hypochlorite. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号