首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The interaction of pertussis toxin (PT) with cells and model membranes was investigated by examining PT-induced intoxication of Chinese hamster ovary cells and by studying the binding of PT and its subunits to phospholipid vesicles. Since certain bacterial toxins require an acidic environment for efficient interaction with membranes and subsequent entry into the cell, the requirement for an acidic environment for PT action was examined. PT, unlike bacterial toxins such as diphtheria toxin, did not require an acidic environment for efficient intoxication of Chinese hamster ovary cells. Potential modes by which PT might interact with biological membranes were studied by examining the binding of PT to a model membrane system. PT was found to be capable of interacting with phospholipid vesicles, however, efficient binding of the toxin to the vesicles occurred only in the presence of both ATP and reducing agent. The A subunit portion of the toxin bound preferentially to the vesicles while little binding of the B oligomer portion of PT to the model membranes was observed. Isolated A subunit, in the absence of the B oligomer, also bound to the vesicles with optimal binding occurring in the presence of reducing agent. After cleavage of the A subunit by trypsin, probably at Arg-181, Arg-182, and/or Arg-193, large fragments which lacked the C-terminal portion of the A subunit of PT no longer associated with the lipid vesicles. These results suggest that the A subunit of PT can interact directly with a lipid matrix and, if freed from the constraints imposed by the B oligomer, may be capable of interacting with cellular membranes.  相似文献   

2.
Subcellular fractionation techniques have been used to assess the localization of injected 125I-labeled cholera toxin (125I-CT) taken up by rat liver in vivo, and to determine whether internalization of the toxin is required for the generation of the active A1 peptide. The uptake of injected 125I-CT into the liver is maximal at 5 min (about 10% injected dose/g). At this time the radioactivity is for the most part recovered in the microsomal (P) fraction, but later on it progressively associates with the mitochondrial-lysosomal (ML) and supernatant fractions. The radioactivity is enriched 7-fold in plasma membranes at 5-15 min, and 15-60-fold in Golgi-endosome (GE) fractions at 15-60 min. On analytical sucrose gradients the radioactivity associated with the P fraction is progressively displaced from the region of 5'-nucleotidase (a plasma membrane marker) to that of galactosyltransferase (a Golgi marker). On Percoll gradients, however, it is displaced towards acid phosphatase (a lysosomal marker). Density-shift experiments, using Triton WR 1339, suggest that some radioactivity associated with the P fraction (at 30 min) and all the radioactivity present in the ML fraction (at 2 h) is intrinsic to acid-phosphatase-containing structures, presumably lysosomes. Comparable experiments using 3,3'-diaminobenzidine cytochemistry indicate that the radioactivity present in GE fractions is separable from galactosyltransferase, and thus is presumably associated with endosomes. The fate of injected 125I-labeled cholera toxin B subunit differs from that of the whole toxin by a more rapid uptake (and/or clearance) of the ligand into subcellular fractions, and a greater accumulation of ligand in the ML fraction. Analysis of GE fractions by SDS/polyacrylamide gel electrophoresis shows that, up to 10 min after injection of 125I-CT, about 80% of the radioactivity is recovered as A subunit and 20% as B subunit, similarly to control toxin. Later on there is a time-dependent decrease in the amount of A subunit and, at least with the intermediate GE fraction, a concomitant appearance of A1 peptide (about 15% of the total at 60 min). In contrast the radioactivity associated with plasma membranes remains indistinguishable from unused toxin. It is concluded that, upon interaction with hepatocytes, 125I-CT (both subunits A and B) sequentially associates with plasma membranes, endosomes and lysosomes, and that endosomes may represent the major subcellular site at which the A1 peptide is generated.  相似文献   

3.
Nucleotide sequences within the cholera toxin operon.   总被引:2,自引:0,他引:2       下载免费PDF全文
Nucleotide sequences coding for the N- and C-terminus of the A subunit and the N-terminus of the B subunit of cholera toxin were determined. These results show that the genes for the A and B subunits overlap out of phase by one nucleotide and that each subunit is synthesised as a precursor molecule which is subsequently processes after translation. It is proposed that the synthesis of each subunit is regulated at the translational level. Considerable homology with the heat labile toxin genes of enteropathogenic E.coli was noted.  相似文献   

4.
A competitive binding assay has been developed to determine how modifications to the B subunit of cholera toxin affect the binding affinity of the subunit for an ileal brush border membrane surface. The Ricinus communis120 agglutinin (RCA120) specifically binds to terminal beta-D-galactosyl residues such as those found in oligosaccharide side chains of glycoproteins and ganglioside GM1. Conditions were designed to produce binding competition between the B subunit of cholera toxin and the RCA120 agglutinin. Displacement of RCA120 from brush border surfaces was proportional to the concentration of B subunit added. This assay was used to study the effect of modification of B subunit on competitive binding affinity for the ileal brush border surface. The B subunit of cholera toxin was modified by coupling an average of five sulfhydryl groups to each B subunit molecule and by reaction of the SH-modified B subunit with liposomes containing a surface maleimide group attached to phosphatidylethanolamine. SH-modified B subunit was approximately 200-fold more effective than native B subunit in displacing lectin from brush border surfaces in the competitive binding assay. The enhanced binding activity was retained on covalent attachment of the modified B subunit to the liposome surface. We conclude that the B subunit of cholera toxin may be a useful targeting agent for directing liposomes to cell surfaces that contain a ganglioside GM1 ligand.  相似文献   

5.
Membrane-bound enterotoxin of Vibrio cholerae   总被引:3,自引:0,他引:3  
The mode of transport of the complex toxin molecule of Vibrio cholerae (which has a mol. wt of 84000 and consists of several subunits) across the inner and outer membranes of V. cholerae is not known. In this study we found two peptides in the outer and inner membranes of V. cholerae which may be the form in which the toxin subunits are transported across the membrane. We examined two growth conditions: aerobic growth at 37 degrees C, when most of the synthesized toxin is membrane-bound; and anaerobic growth at 37 degrees C, when little toxin remains membrane-bound, the toxin being released into the growth medium. When V. cholerae was grown aerobically at 37 degrees C, the outer and the inner membranes contained two peptides with mol. wts of approximately 22000 and 6000 which were not found in the outer or the inner membrane of anaerobically grown cells. Sodium deoxycholate, which releases membrane-bound toxin, released several peptides including the 22000 and the 6000 mol. wt peptides. Trypsin also released the 22000 and 6000 mol. wt peptides. Purified cholera toxin had three kinds of peptides, of mol. wt 21000 (A1 peptide), 11000 (B subunit) and 5000 (A2 peptide). We postulate that the membrane peptides may be precursors of the A subunit of the toxin molecule.  相似文献   

6.
Cholera toxin stimulates adenylate cyclase in rat liver after intravenous injection. The stimulation follows a short latent period of 10min, and maximum stimulation was attained at 120min. Half-maximal stimulation was achieved at 35min. In contrast with this lengthy time course in the intact cell, adenylate cyclase in broken-cell preparations of rat liver in vitro were maximally stimulated by cholera toxin (in the presence of NAD+) in 20min with half-maximal stimulation in 8min. Binding of cholera toxin to cell membranes by the B subunits is followed by translocation of the A subunit into the cell or cell membrane, and separation of the A1 polypeptide chain from the A2 chain by disulphide-bond reduction, and finally activation of adenylate cyclase by the A1 chain and NAD+. As the binding of cholera toxin is rapid, two possible rate-limiting steps could be the determinants of the long time course of action. These are translocation of the A1 chain from the outside of the cell membrane to its site of action (this includes the time required for separation from the whole toxin) or the availability of NAD+ for activation. When NAD+ concentrations in rat liver were elevated 4-fold, by the administration of nicotinamide, no change in the rate of activation of adenylate cyclase by cholera toxin was observed. Thus the intracellular concentration of NAD+ is not rate-limiting and the major rate-limiting determinant in intact cells must be between the time of toxin binding to the cell membrane and the appearance of subunit A1 at the enzyme site.  相似文献   

7.
Human platelets are defective in processing of cholera toxin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.  相似文献   

8.
O M Rosen 《Biochemistry》1976,15(13):2902-2905
Cholera toxin, an activator of adenylate cyclase in a wide variety of cells, is a substrate for the phosphotransferase reaction catalyzed by purified cyclic adenosine 5'-monophosphate dependent bovine cardiac muscle protein kinase and the protein associated with human erythrocyte membranes. Phosphorylation occurs when the toxin is dissociated with 5-20 mM dithiothreitol and is restricted to the A1 or "adenylate cyclase activating" subunit of the toxin.  相似文献   

9.
The B subunit of cholera toxin, which binds to ganglioside GM1, enhanced DNA synthesis in rat hepatocytes in primary culture induced by insulin and/or epidermal growth factor. The effect was dose-dependent, and whole cholera toxin, activating adenylate cyclase, showed a higher effect than the B subunit alone. The B subunit acted additively with other agents that also increase cyclic AMP levels. A competitive antagonist of cyclic AMP could not suppress the effect of the B subunit completely. These data suggest that the effect is independent of the cyclic AMP signal pathway, and that GM1 plays a role in hepatocyte proliferation.  相似文献   

10.
The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [3H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP greater than ATP greater than GTP greater than CTP greater than TTP for pertussis toxin and ATP greater than GTP greater than TTP greater than CTP for the B oligomer. Phosphate ions inhibited the binding of [3H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [3H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.  相似文献   

11.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins.  相似文献   

12.
The arrangement of subunits in cholera toxin.   总被引:64,自引:0,他引:64  
D M Gill 《Biochemistry》1976,15(6):1242-1248
Cholera toxin consists of five similar B subunits of apparent molecular weight about 10 600 and one A subunit (29 000) consisting of two peptides (A1 23 000-24 000 and A2 about 5500) linked by a single disulfide bond. Each B subunit also contains one internal disulfide bond which is readily reduced but is protected from carboxymethylation unless the reduced subunits are heated in urea. Tyrosine residues in A1 and in B subunits are readily iodinated, but the intact B assembly does not react with iodine. Upon reaction with the cross-linking reagent dimethyl suberimidate, B subunits may be covalently connected to each other, to A1 and to A2. A1 and A2 may also be cross-linked. The B subunits are probably arranged in a ring with A on the axis. A2 is required for the re-assembly of toxin from its subunits and may serve to hold A1 on the B ring. The maximum activity of cholera toxin in vitro is obtained only when the active peptide, A1, is separated from the rest of the molecule. Such separation, and the insertion of A1 into the cytosol, must follow the binding of the complete toxin, through component B, to the exterior of intact cells. This binding increases the effective concentration of the toxin in the vicinity of the plasma membrane. Possible ways in which A1 then crosses the membrane are considered in the Discussion.  相似文献   

13.
In 55 clinical isolates of Vibrio cholerae biotype El Tor, cholera toxin (CT) production was higher after growth in liquid medium first under relatively anaerobic conditions followed by excessive aeration (AKI conditions) as compared with growth under the optimal conditions for CT production from V. cholerae of classical biotype (median toxin level being 400 ng ml-1 and 1 ng ml-1 respectively, for the two different growth conditions). Large growth volumes further enhanced El Tor toxin production to levels at or above 3-5 micrograms ml-1 from several strains, which allowed for easy purification of toxin by salt precipitation, aluminium hydroxide adsorption and/or GM1 ganglioside affinity chromatography. However, such purified El Tor CT completely lacked the A subunit when examined by SDS-PAGE or by monoclonal anti-A subunit antibody GM1-ELISA. In contrast, when El Tor CT was prepared from bacteria grown in the presence of specific antiserum against soluble haemagglutinin/protease it contained the A subunit (unnicked) in the same proportion to the B subunit (1A:5B) as classical CT. Immunodiffusion-in-gel tests revealed that the B subunits of El Tor and classical CTs share major epitopes but also have one or more weaker biotype-specific epitopes. The two types of toxin were practically indistinguishable in various GM1-ELISA tests, and antisera raised against El Tor and classical CT, respectively, could also completely neutralize the heterologous as well as the homologous toxin activity in vivo. The results indicate that CTs from El Tor and classical V. cholerae, despite demonstrable epitope differences, are predominantly cross-reactive and give rise to antisera with strong cross-neutralizing activity.  相似文献   

14.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins.  相似文献   

15.
Pertussis toxin and target eukaryotic cells: binding, entry, and activation.   总被引:20,自引:0,他引:20  
H R Kaslow  D L Burns 《FASEB journal》1992,6(9):2684-2690
Pertussis toxin, a protein virulence factor produced by Bordetella pertussis, is composed of an A protomer and a B oligomer. The A protomer consists of a single polypeptide, termed the S1 subunit, which disrupts transmembrane signaling by ADP-ribosylating eukaryotic G-proteins. The B oligomer, containing five polypeptides, binds to cell receptors (most likely containing carbohydrate) and delivers the S1 subunit. Current knowledge suggests that expression of ADP-ribosyltransferase activity in target eukaryotic cells arises after 1) nucleotides and membrane lipids allosterically promote the release of the S1 subunit; and 2) the single disulfide bond in the S1 subunit is reduced by reductants such as glutathione. This model suggests conditions for the proper use of the toxin as an experimental reagent.  相似文献   

16.
霍乱毒素B亚基基因具有自己的启动子   总被引:1,自引:0,他引:1  
本研究发现并证实霍乱毒素B亚基基因上游Xba Ⅰ~Cla Ⅰ限制性片段内存在具有启动子活性的序列;在该启动子作用下,霍乱毒素B亚基表达水平可达200mg/L,氯霉素乙酰基转移酶基因表达水平随培养条件不同在0.3~10mg/L之间,大肠杆菌β-半乳糖苷酶基因的表达量达4100U/ml。在该启动子的控制下霍乱毒素B亚基基因可以高效表达,该启动子的存在可能是由于霍乱毒素操纵子中霍乱毒素B亚基表达量是A亚基的6倍。  相似文献   

17.
Cholera toxin, or peptide A1 from the toxin, activates adenylate cyclase solubilized from rat liver with Lubrol PX, provided that cell sap, NAD+, ATP and thiol-group-containing compounds are present. The activation is abolished by antisera to whole toxin, but not to subunit B.  相似文献   

18.
Adenine nucleotides promote dissociation of pertussis toxin subunits   总被引:11,自引:0,他引:11  
Pertussis toxin is composed of an enzymatically active A subunit and a binding component (B oligomer). Both the holotoxin and the isolated A subunit have previously been shown to exhibit NAD glycohydrolase activity although the A subunit is more active on a molar basis than the holotoxin. We have investigated the mechanism by which ATP stimulates the activity of this toxin. Since dissociation of pertussis toxin subunits would result in increased NAD glycohydrolase activity, the ability of ATP to promote release of the A subunit from the B oligomer was examined. In the presence of the zwitterionic detergent 3-(3-cholamidopropyldimethyl)-1-ammonio)-propanesulfonate, concentrations of ATP as low as 1 microM promoted subunit dissociation. The concentration of ATP required for release of the A subunit was similar to that required for stimulation of NAD glycohydrolase activity. Both ATP and ADP promoted subunit dissociation and stimulated NAD glycohydrolase activity. In contrast, AMP and adenosine did not alter NAD glycohydrolase activity or affect subunit structure. The ability of ATP to decrease the affinity of the A subunit for the B oligomer may play a role in nucleotide stimulation of pertussis toxin activity.  相似文献   

19.
The crystal structure determination of heat labile enterotoxin (LT) bound to two different lanthanide ions, erbium and samarium, revealed two distinct ion binding sites in the interface of the A subunit and the B pentamer of the toxin. One of the interface sites is conserved in the very similar cholera toxin sequence. These sites may be potential calcium binding sites. Erbium and samarium binding causes a change in the structure of LT: a rotation of the A1 subunit of up to two degrees relative to the B pentamer.  相似文献   

20.
Porcine thyrotropin (TSH) receptors have been purified by Sepharose-TSH affinity chromatography and crosslinked to a 125I-labelled photoactive derivative (N-hydroxysuccinimidyl 4-azidobenzoate; HSAB) of TSH (125I-HSAB-TSH). Purification of the crosslinked complexes on Sephacryl S-300 followed by polyacrylamide-gel electrophoresis in sodium dodecyl sulphate showed that the receptor contained two subunits. One subunit (A) with Mr 45 000 was crosslinked to TSH and the other (B) subunit, Mr 25 000, was linked to the A subunit by a disulphide bridge(s). Other, as yet unidentified, subunits may have been non-covalently associated with the A and B subunits. Analysis of reduced and non-reduced crosslinked TSH receptor-125I-HSAB-TSH on Sephacryl S-300 in the presence and absence of detergent indicated that the A subunit was a hydrophilic peptide. This was confirmed in studies of the release into aqueous solution by reducing agent treatment of 125I-HSAB-TSH crosslinked to the TSH receptor A subunit in thyroid membranes. Similar results were obtained with TSH receptors in human thyroid and guinea pig fat cell membranes. These studies suggest that the hydrophilic A subunit of the receptor forms a binding site for TSH on the outside surface of the cell membrane and that the A subunit is linked to the cell membrane by way of a disulphide bridge to the receptor B subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号