共查询到20条相似文献,搜索用时 31 毫秒
1.
Wersinger SR Caldwell HK Martinez L Gold P Hu SB Young WS 《Genes, Brain & Behavior》2007,6(6):540-551
Two receptors for vasopressin (Avp) are expressed in the brain, the Avp 1a receptor (Avpr1a) and the Avp 1b receptor (Avpr1b). To investigate the role of Avpr1a in behaviors in mice more extensively, we generated a line of mice lacking a functional Avpr1a (knockout, Avpr1a(-/-)). We first performed a baseline phenotypic screen of the Avpr1a knockouts followed by a more detailed analysis of their circadian rhythms and olfactory function. When free-running in constant darkness, the Avpr1a(-/-) mice have a longer circadian tau than the wild types. There are also subtle olfactory deficits in Avpr1a(-/-) mice as measured in an olfactory habituation/dishabituation test and in the discrimination of female urine from male urine using an operant testing paradigm. An extensive body of research has shown that manipulation of the Avpr1a alters behavior, including aggression and social recognition. Therefore, we expected profound behavioral deficits in mice lacking the Avpr1a gene. Contrary to our expectations, social aggression, anxiety-like behavior and social recognition are unaffected in this line of Avpr1a knockout mice. These data suggest either that the Avpr1a is not as critical as we thought for social behavior in mice or, more likely, that the neural circuitry underlying aggression and other social behaviors compensates for the life-long loss of the Avpr1a. However, the olfactory deficits observed in the Avpr1a(-/-) mice suggest that Avp and Avpr1a drugs may affect behavior, in part, by modulation of chemosensory systems. 相似文献
2.
The brain vasopressin system mediates various social behaviors as has been studied mostly in males. Only recently, advances in social neuroscience revealed that central vasopressin signaling via its V1a and V1b receptors also facilitates female social behavior, including maternal behavior. In this review, we show how maternal care, maternal motivation and maternal aggression of lactating rat mothers are modulated in a V1 receptor subtype‐ and brain region‐specific manner. Measuring local release pattern of vasopressin via intracerebral microdialysis in the behaving rat mother as well as using pharmacological approaches to activate or block vasopressin receptors with subsequent behavioral observation provide detailed insight into the functional role of the vasopressin system in maternal behavior. In this context, the complementary rat animal model of high (HAB) and low anxiety‐related behavior (LAB) is particularly helpful due to the genetically determined high activity of the vasopressin gene in HAB rats, which also underlies their high levels of maternal behavior. Furthermore, first studies in humans indicate that the vasopressin system in general and the V1a receptor in more particular might mediate mothering. 相似文献
3.
We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b −/−) mice. We then went on to test the ability of Avpr1b −/− mice to form dominance hierarchies. No major differences were found between Avpr1b −/− and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b −/− mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b −/− mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b −/− mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b −/− mice may be able to form dominance hierarchies they appear to employ alternate strategies. 相似文献
4.
Increased aggression and lack of maternal behavior in Dio3‐deficient mice are associated with abnormalities in oxytocin and vasopressin systems 下载免费PDF全文
Thyroid hormones regulate many aspects of brain development and function, and alterations in the levels of thyroid hormone action lead to abnormal anxiety‐ and depression‐like behaviors. A complement of factors in the brain function independently of circulating levels of hormone to strictly controlled local thyroid hormone signaling. A critical factor is the type 3 deiodinase (DIO3), which is located in neurons and protects the brain from excessive thyroid hormone. Here, we examined whether a local increase in brain thyroid hormone action secondary to DIO3 deficiency is of consequence for social behaviors. Although we did not observe alterations in sociability, Dio3?/? mice of both sexes exhibited a significant increase in aggression‐related behaviors and mild deficits in olfactory function. In addition, 85% of Dio3?/? dams manifested no pup‐retrieval behavior and increased aggression toward the newborns. The abnormal social behaviors of Dio3?/? mice were associated with sexually dimorphic alterations in the physiology of oxytocin (OXT) and arginine vasopressin (AVP), 2 neuropeptides with important roles in determining social interactions. These alterations included low adult serum levels of OXT and AVP, and an abnormal expression of Oxt, Avp and their receptors in the neonatal and adult hypothalamus. Our results demonstrate that DIO3 is essential for normal aggression and maternal behaviors, and indicate that abnormal local regulation of thyroid hormone action in the brain may contribute to the social deficits associated with neurodevelopmental disorders. 相似文献
5.
Bisceglia R Jenkins JM Wigg KG O'Connor TG Moran G Barr CL 《Genes, Brain & Behavior》2012,11(3):262-268
This study examined associations among maternal sensitivity, mothers' early adversity and the Arginine Vasopressin 1a Receptor (AVPR1A) gene. Early adversity in mothers' background has been found to be associated with lower maternal sensitivity. Animal literature suggests that variation in the AVPR1A gene is associated with parenting quality. The goal of the study was to examine the role of the AVPR1A gene in maternal sensitivity, especially under conditions of high early adversity. Participants included 151 Caucasian women from a community sample. The women were videotaped in their home while interacting separately with two of their children (target child = 18 months, older sibling <6 years). Evidence was found for an association between the AVPR1A gene and maternal sensitivity. Mothers with two copies of the long RS3 alleles were less sensitive than mothers with one or zero copies of the long alleles. This association was strongest under conditions of high maternal early adversity. 相似文献
6.
Association between burst-pulse sounds and aggressive behavior in captive Atlantic bottlenosed dolphins (Tursiops truncatus) 总被引:1,自引:0,他引:1
Neal A. Overstrom 《Zoo biology》1983,2(2):93-103
A specific display observed during agonistic behavior among captive Atlantic bottlenosed dolphins (Tursiops truncatus) was examined. The primary component of the display was an open-mouthed posture accompanied by violent vertical head motions and the emission of pulse-type vocalizations. Jaw-clap behavior produced during the display was quantified for use as an index of aggressive motivation. By aurally monitoring the animals' vocalizations it was found that the level of aggressive response between the participants of the interactions increased with the production and subsequent duration of burst-pulse sounds. The possibility of burstpulse sounds resulting in auditory or tactile discomfort when directed toward conspecifics is discussed. 相似文献
7.
Wersinger SR Kelliher KR Zufall F Lolait SJ O'Carroll AM Young WS 《Hormones and behavior》2004,46(5):393-645
In this study, we characterized more thoroughly the social behavior of vasopressin 1b receptor null (V1bR-/-) mice. We confirmed that V1bR-/- males exhibit less social aggression than their wild-type (V1bR+/+) littermates. We tested social preference by giving male subjects a choice between pairs of soiled or clean bedding. In general, V1bR+/+ mice spent significantly more time engaged in chemoinvestigation of these social stimuli than V1bR-/- mice. Male V1bR+/+ mice preferred female-soiled bedding over male-soiled bedding, male-soiled bedding over clean bedding, and female-soiled bedding over clean bedding. In contrast, V1bR-/- males failed to exhibit a preference for any bedding. This difference in behavior is not explained by an anosmic condition as there were no differences between V1bR-/- and V1bR+/+ mice in their abilities to detect a cookie buried in clean bedding, or in their ability to perform in an operant conditioning task using a fully automated liquid dilution olfactometer. In the latter task, male V1bR-/- mice were fully capable of discriminating between male and female mouse urine. The latencies to learn this task did not differ between the two genotypes. Thus, a V1bR-/- male's ability to differentiate between male and female chemosensory cues appears no different than that of a V1bR+/+ male's. We propose that the V1bR plays an important role in social motivation, perhaps by coupling the processing, integration, and/or interpretation of chemosensory cues with the appropriate behavioral response. 相似文献
8.
Vekovischeva OY Aitta-Aho T Echenko O Kankaanpää A Seppälä T Honkanen A Sprengel R Korpi ER 《Genes, Brain & Behavior》2004,3(5):253-265
The importance of AMPA-type glutamate receptors has been demonstrated in neuronal plasticity and in adaptation to drugs of abuse. We studied the involvement of AMPA receptors in social interaction and anxiety and found that in several paradigms of agonistic behavior naïve male mice deficient for the GluR-A subunit- containing AMPA receptors are less aggressive than wild-type littermates. GluR-A deficient mice and wild-type littermates exhibited similar basic behavior and reflexes as monitored by observational Irwin's test, but they tended to be less anxious in elevated plus-maze and light-dark tests. Maternal aggression or male-female encounters were not affected which suggests that male hormones are involved in the expression of suppressed aggressiveness. However, testosterone levels and brain monoamines can be excluded and found to be similar between GluR-A deficient and wild-type littermates. The reduced AMPA receptor levels caused by the lack of the GluR-A subunit, and measured by a 30% reduction in hippocampal [3 H]-S-AMPA binding, seem to be the reason for suppressed male aggressiveness. When we analyzed mice with reduced number of functional AMPA receptors mediated by the genomic introduced GluR-A(Q582R) channel mutation, we observed again male-specific suppressed aggression, providing additional evidence for GluR-A subunit-containing AMPA receptor involvement in aggression. 相似文献
9.
After peri‐adolescence isolation rearing (IS) and subchronic ketamine (KET) treatment, adult, selectively bred Wistar rats (named WISKET) mimic abnormal behaviors reminiscent of human schizophrenia, including reduced prepulse‐inhibition of startle reflex, disturbances in cognition, locomotor activity and thermoregulation, decreased pain sensitivity and electrophysiological alterations. To further validate our WISKET rat line, regarding its translational utility in schizophrenia research, we examined their social behavior and introduced a short and simple holeboard (HB)‐like test to investigate their motivational deficit that predicts the cognitive disturbance. Sex‐dependent alterations in schizophrenia may yield important insights into its etiology; thus, male and female WISKET rats were also investigated and compared with their naive Wistar counterparts. Considering the contribution of the hippocampal and cortical GABAergic inhibitory circuitry in these behavioral alterations, molecular‐biology studies were also performed regarding the GAD1 gene products. Impaired social activity with increased aggression, stress‐related behavior, active social withdrawal, motivation deficit and decreased exploration were observed, especially in male WISKET rats, compared with Wistar ones and their corresponding females. These alterations were accompanied by sex‐dependent alterations regarding GAD67 mRNA and protein expression in the prefrontal cortex and hippocampus. In conclusion, the WISKET animals are valuable tools for animal‐based preclinical drug discovery studies for predictive screening of novel compounds improving negative symptoms with potential antipsychotic efficacy. 相似文献
10.
11.
Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor beta knockout (betaERKO) male mice 总被引:3,自引:0,他引:3
Nomura M Durbak L Chan J Smithies O Gustafsson JA Korach KS Pfaff DW Ogawa S 《Hormones and behavior》2002,41(3):288-296
Estrogen, as an aromatized metabolite of testosterone, has a facilitatory effect on male aggressive behavior in mice. Two subtypes of estrogen receptors, alpha (ER-alpha) and beta (ER-beta), in the brain are known to bind estrogen. Previous studies revealed that the lack of ER-alpha gene severely reduced the induction of male aggressive behavior. In contrast, mice that lacked the ER-beta gene tended to be more aggressive than wild type (WT) control mice, although the behavioral effects of ER-beta gene disruption were dependent on their social experience. These findings lead us to hypothesize that estrogen may facilitate aggression via ER-alpha whereas it may inhibit aggression via ER-beta. In the present study, we further investigated the role of ER-beta in the regulation of aggressive behavior by examining developmental changes starting at the time of first onset, around the age of puberty. Aggressive behaviors of ER-beta gene knockout (betaERKO) mice were examined in three different age groups, puberty, young-adult, and adult. Each mouse was tested every other day for three times in a resident-intruder paradigm against olfactory bulbectomized intruder mice and their trunk blood was collected for measurements of serum testosterone after the completion of the study. Overall, betaERKO mice were significantly more aggressive than WT. These genotype differences were more pronounced in puberty and young adult age groups, but not apparent in the adult age group, in which betaERKO mice were less aggressive than those in two younger age groups. Serum testosterone levels of betaERKO mice were significantly higher than those of WT mice only in the pubertal age group, but not in young adult (when betaERKO mice were still significantly more aggressive than WT mice) and adult (when no genotype differences in aggression were found) age groups. These results suggest that ER-beta mediated actions of gonadal steroids may more profoundly be involved in the inhibitory regulation of aggressive behavior in pubertal and young adult mice. 相似文献
12.
K. V. Sandhu D. Lang B. Müller S. Nullmeier Y. Yanagawa H. Schwegler O. Stork 《Genes, Brain & Behavior》2014,13(4):439-450
Reduced glutamic acid decarboxylase (GAD)67 expression may be causally involved in the development of social withdrawal in neuropsychiatric states such as autism, schizophrenia and bipolar disorder. In this study, we report disturbance of social behavior in male GAD67 haplodeficient mice. GAD67+/? mice, compared to GAD67+/+ littermates, show reduced sociability and decreased intermale aggression, but normal nest building and urine marking behavior, as well as unchanged locomotor activity and anxiety‐like behavior. Moreover, the mutants display a reduced sensitivity to both social and non‐social odors, indicating a disturbance in the detection and/or processing of socially relevant olfactory stimuli. Indeed, we observed reduced activation of the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, medial and cortical amygdala upon exposure of GAD67+/? mice to social interaction paradigm, as indicated by c‐Fos immunohistochemistry. These data suggest a disturbance of stimulus processing in the brain circuitry controlling social behavior in GAD67+/? mice, which may provide a useful model for studying the impact of a reduced GAD67 expression on alterations of social behavior related to neuropsychiatric disorders . 相似文献
13.
Raphe serotonin neuron‐specific oxytocin receptor knockout reduces aggression without affecting anxiety‐like behavior in male mice only 下载免费PDF全文
J. H. Pagani S. K. Williams Avram Z. Cui J. Song É. Mezey J. M. Senerth M. H. Baumann W. S. Young 《Genes, Brain & Behavior》2015,14(2):167-176
Serotonin and oxytocin influence aggressive and anxiety‐like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety‐like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open‐field, olfactory habituation/dishabituation or, surprisingly, anxiety‐like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident‐intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety‐like behaviors or maternal care. 相似文献
14.
To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventricular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. 相似文献
15.
《Neuron》2023,111(4):557-570.e7
16.
Itoh S Yamada S Mori T Miwa T Tottori K Uwahodo Y Yamamura Y Fukuda M Yamamoto K Tanoue A Tsujimoto G 《American journal of physiology. Endocrinology and metabolism》2006,291(1):E147-E151
Vasopressin V(1b) receptor is specifically expressed in the pituitary and mediates adrenocorticotropin release, thereby regulating stress responses via its corticotropin releasing factor-like action. In the present study we examined catecholamine release in response to two types of stress in mice lacking the V(1b) receptor gene (V(1b)R(-/-) mice) vs. wild-type mice. There were no significant differences in the basal plasma levels of catecholamines between the two genotypes. In response to stress induced by forced swimming, norepinephrine (NE), but not epinephrine (E) or dopamine (DA), was increased in wild-type mice, whereas the increases in NE and DA were not observed in V(1b)R(-/-) mice. In wild-type mice, E, but not NE or DA, was increased in response to social isolation stress, whereas the increase in E was not observed in V(1b)R(-/-) mice. These results suggest that the V(1b) receptor regulates stress-induced catecholamine release. Because it has been suggested that arginine-vasopressin (AVP) is related to the development of depression, we also evaluated immobility time in the forced swimming test, and we found no significant change in V(1b)R(-/-) mice. Taken together, these findings suggest that, in addition to the previously elucidated effect on the hypothalamic-pituitary-adrenal axis, vasopressin activity via V(1b) receptors regulates stress-induced catecholamine release. 相似文献
17.
Johansson A Bergman H Corander J Waldman ID Karrani N Salo B Jern P Algars M Sandnabba K Santtila P Westberg L 《Genes, Brain & Behavior》2012,11(2):214-221
We explored if the disposition to react with aggression while alcohol intoxicated was moderated by polymorphic variants of the oxytocin receptor gene (OXTR). Twelve OXTR polymorphisms were genotyped in 116 Finnish men [aged 18-30, M = 22.7, standard deviation (SD) = 2.4] who were randomly assigned to an alcohol condition in which they received an alcohol dose of 0.7 g pure ethanol/kg body weight or a placebo condition. Aggressive behavior was measured using a laboratory paradigm in which it was operationalized as the level of aversive noise administered to a fictive opponent. No main effects of the polymorphisms on aggressive behavior were found after controlling for multiple testing. The interactive effects between alcohol and two of the OXTR polymorphisms (rs4564970 and rs1488467) on aggressive behavior were nominally significant and remained significant for the rs4564970 when controlled for multiple tests. To the best of our knowledge, this is the first experimental study suggesting interactive effects of specific genetic variants and alcohol on aggressive behavior in humans. 相似文献
18.
19.
Jyotika J McCutcheon J Laroche J Blaustein JD Forger NG 《Developmental neurobiology》2007,67(11):1511-1519
Cell death is a nearly ubiquitous feature of the developing nervous system, and differential death in males and females contributes to several well studied sex differences in neuron number. Nonetheless, the functional importance of neuronal cell death has been subjected to few direct tests. Bax, a pro-apoptotic protein, is required for cell death in many neural regions. Deletion of the Bax gene in mice increases neuron number in several areas and eliminates sex differences in cell number in the brain and spinal cord. Here, sexual and motor behaviors were examined in Bax-/- mice and their wild-type siblings to test the functional consequences of preventing Bax-dependent cell death. Animals were gonadectomized in adulthood and provided with ovarian hormones or with testosterone for tests of feminine and masculine sexual behaviors, respectively. Wild-type mice exhibited a sex difference in feminine sexual behavior, with high lordosis scores in females and low scores in males. This sex difference was eliminated by Bax deletion, with very low receptivity exhibited by both male and female Bax-/- mice. Masculine sexual behavior was not sexually dimorphic among wild-type mice, but mounts and pelvic thrusts were nearly eliminated in Bax-/- mice of both sexes. Motor strength and performance at low speeds on a RotaRod apparatus did not differ by sex or Bax gene status. However, Bax-/- animals exhibited impairments on the RotaRod at higher speeds. Thus, developmental cell death may be required for masculine and feminine sexual behaviors and the fine tuning of motor coordination. 相似文献
20.
Vasopressin regulates complex behaviors such as anxiety, parenting, social engagement and attachment and aggression in a species-specific manner. The capacity of vasopressin to modulate these behaviors is thought to depend on the species-specific distribution patterns of vasopressin 1a receptors (V1aRs) in the brain. There is considerable individual variation in the pattern of V1aR binding in the brains of the prairie vole species, Microtus ochrogaster. We hypothesize that this individual variability in V1aR expression levels is associated with individual variation in a polymorphic microsatellite in the 5' regulatory region of the prairie vole v1ar gene. Additionally, we hypothesize that individual variation in V1aR expression contributes to individual variation in vasopressin-dependent behaviors. To test these hypotheses, we first screened 20 adult male prairie voles for behavioral variation using tests that measure anxiety-related and social behaviors. We then assessed the brains of those animals for V1aR variability with receptor autoradiography and used polymerase chain reaction to genotype the same animals for the length of their 5' microsatellite polymorphism in the v1ar gene. In this report, we describe the results of this discovery-based experimental approach to identify potential gene, brain and behavior interrelationships. The analysis reveals that V1aR levels, in some but not all brain regions, are associated with microsatellite length and that V1aR levels in those and other brain regions correlate with anxiety-related and social behaviors. These results generate novel hypotheses regarding neural control of anxiety-related and social behaviors and yield insight into potential mechanisms by which non-coding gene polymorphisms may influence behavioral traits. 相似文献