首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rec2 is the single Rad51 paralog in Ustilago maydis. Here, we find that Rec2 is required for radiation-induced Rad51 nuclear focus formation but that Rec2 foci form independently of Rad51 and Brh2. Brh2 foci also form in the absence of Rad51 and Rec2. By coprecipitation from cleared extracts prepared from Escherichia coli cells expressing the proteins, we found that Rec2 interacts physically not only with Rad51 and itself but also with Brh2. Transgenic expression of Brh2 in rec2 mutants can effectively restore radiation resistance, but the frequencies of spontaneous Rad51 focus formation and allelic recombination are elevated. The Dss1-independent Brh2-RPA70 fusion protein is also active in restoring radiation sensitivity of rec2 but is hyperactive to an extreme degree in allelic recombination and in suppressing the meiotic block of rec2. However, the high frequency of chromosome missegregation in meiotic products is an indicator of a corrupted process. The results demonstrate that the importance of Rec2 function is not only in stimulating recombination activity but also in ensuring that recombination is properly controlled.  相似文献   

2.
3.
Isolation of the REC1 gene controlling recombination in Ustilago maydis   总被引:5,自引:0,他引:5  
T Tsukuda  R Bauchwitz  W K Holloman 《Gene》1989,85(2):335-341
  相似文献   

4.
Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.  相似文献   

5.
Isolation of the REC2 gene controlling recombination in Ustilago maydis   总被引:2,自引:0,他引:2  
R Bauchwitz  W K Holloman 《Gene》1990,96(2):285-288
  相似文献   

6.
Mazloum N  Zhou Q  Holloman WK 《Biochemistry》2007,46(24):7163-7173
Brh2 is the Ustilago maydis ortholog of the BRCA2 tumor suppressor. It functions in repair of DNA by homologous recombination by controlling the action of Rad51. A critical aspect in the control appears to be the recruitment of Rad51 to single-stranded DNA regions exposed as lesions after damage or following a disturbance in DNA synthesis. In previous experimentation, Brh2 was shown to nucleate formation of the Rad51 nucleoprotein filament that becomes the active element in promoting homologous pairing and DNA strand exchange. Nucleation was found to be initiated at junctions of double-stranded and single-stranded DNA. Here we investigated the DNA binding specificity of Brh2 in more detail using oligonucleotide substrates. We observed that Brh2 prefers partially duplex structures with single-stranded branches, flaps, or D-loops. We found also that Brh2 has an inherent ability to promote DNA annealing and strand exchange reactions on free as well as RPA-coated substrates. Unlike Rad51, Brh2 was able to promote DNA strand exchange when preincubated with double-stranded DNA. These findings raise the notion that Brh2 may have roles in homologous recombination beyond the previously established Rad51 mediator activity.  相似文献   

7.
8.
The kinetic parameters of the 10 glycolytic enzymes and glycolytic fluxes were determined for the first time in Ustilago maydis. Enzyme activities in yeast grown in minimal medium and harvested in the stationary stage were twofold higher than those from yeast grown in rich medium. In contrast, in yeast harvested in the exponential stage, the enzyme activities were higher in cells grown in rich medium. Phosphofructokinase activity was the lowest in the four culture conditions analyzed, suggesting that this enzyme is a flux-controlling step in U. maydis glycolysis. The V(max) and K(m) values of hexokinase and pyruvate kinase were similar under all conditions. The results revealed that U. maydis aldolase belongs to the class II type of metalo-aldolases. 3-Phosphoglycerate mutase (PGAM) activity was 2,3-bisphosphoglycerate cofactor independent, which contrasted with the cofactor dependency predicted by the amino acid sequence alignment analysis. Pyruvate was secreted by U. maydis yeast in the presence and absence of external glucose. The glycolytic enzyme activities in the U. maydis mycelial form were similar to those found in yeast, except for one order of magnitude higher phosphofructokinase and PGAM activities, thus suggesting differences in the glycolysis regulatory mechanisms between the two cellular forms.  相似文献   

9.
10.
Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research.  相似文献   

11.
12.
13.
《Fungal biology》2020,124(3-4):228-234
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is widely used as a tool to precisely manipulate genomic sequence targeted by sgRNA (single guide RNA) and is adapted in different species for genome editing. One of the major concerns of CRISPR-Cas9 is the possibility of off-target effects, which can be remedied by the deployment of high fidelity Cas9 variants. Ustilago maydis is a maize fungal pathogen, which has served as a model organism for biotrophic pathogens for decades. The successful adaption of CRISPR-Cas9 in U. maydis greatly facilitated effector biology studies. Here, we constructed an U. maydis reporter strain that allows in vivo quantification of efficiency and target specificity of three high fidelity Cas9 variants, Cas9HF1, Cas9esp1.1 and Cas9hypa. This approach identified Cas9HF1 as most specific Cas9 variant in U. maydis. Furthermore, whole genome sequencing showed absence of off-target effects in U. maydis by CRISPR-Cas9 editing.  相似文献   

14.
DSS1 encodes a small acidic protein shown in recent structural studies to interact with the DNA binding domain of BRCA2. Here we report that an ortholog of DSS1 is present in Ustilago maydis and associates with Brh2, the BRCA2-related protein, thus recapitulating the protein partnership in this genetically amenable fungus. Mutants of U. maydis deleted of DSS1 are extremely radiation sensitive, deficient in recombination, defective in meiosis, and disturbed in genome stability; these phenotypes mirror previous observations of U. maydis mutants deficient in Brh2 or Rad51. These findings conclusively show that Dss1 constitutes a protein with a significant role in the recombinational repair pathway in U. maydis, and imply that it plays a similar key role in the recombination systems of organisms in which recombinational repair is BRCA2 dependent.  相似文献   

15.
In a screen for DNA repair-defective mutants in the fungus Ustilago maydis, a gene encoding a BRCA2 family member, designated here as Brh2, was identified. A brh2 null allele was found to be defective in allelic recombination, meiosis, and repair of gaps and ionizing radiation damage to the same extent as rad51. Frequent marker loss in meiosis and diploid formation suggested that genomic instability was associated with brh2. This notion was confirmed by molecular karyotype analysis, which revealed gross chromosomal alterations associated with brh2. Yeast two-hybrid analysis indicated interaction between Brh2 and Rad51. Recapitulation in U. maydis of defects in DNA repair and genome stability associated with brh2 means that the BRCA2 gene family is more widespread than previously thought.  相似文献   

16.
17.
18.
The heterobasidiomycetes responsible for plant smuts obligatorily require their hosts for the completion of the sexual cycle. Accordingly, the sexual cycle of these fungi could so far be studied only by infecting host plants. We have now induced Ustilago maydis, the causative agent of corn smut, to traverse the whole life cycle by growing mixtures of mating-compatible strains of the fungus on a porous membrane placed on top of embryogenic cell cultures of its host Zea mays. Under these conditions, mating, karyogamy and meiosis take place, and the fungus induces differentiation of the plant cells. These results suggest that embryogenic maize cells produce diffusible compounds needed for completion of the sexual cycle of U. maydis, as the plant does for the pathogen during infection. Received: 16 February 1999 / Accepted: 30 June 1999  相似文献   

19.
The phytopathogenic fungus Ustilago maydis is obligately dependent on infection of maize to complete the sexual phase of its life cycle. Mating interactions between haploid, budding cells establish an infectious filamentous cell type that invades the host, induces large tumours and eventually forms large masses of black spores. The ability to switch from budding to filamentous growth is therefore critical for infection and completion of the life cycle, although the signals that influence the transition have not been identified from the host or the environment. We have found that growth in the presence of lipids promotes a filamentous phenotype that resembles the infectious cell type found in planta. In addition, the ability of the fungus to respond to lipids is dependent on both the cAMP signalling pathway and a Ras/MAPK pathway; these pathways are known to regulate mating, filamentous growth and pathogenesis in U. maydis. Overall, these results lead us to hypothesize that lipids may represent one of the signals that promote and maintain the filamentous growth of the fungus in the host environment.  相似文献   

20.
In the corn smut fungus Ustilago maydis, pathogenic development is initiated when two compatible haploid cells fuse and form the infectious dikaryon. Mating is dependent on pheromone recognition by compatible cells. In this report, we set out to evaluate the relationship between the cell cycle and the pheromone response in U. maydis. To achieve this, we designed a haploid pheromone-responsive strain that is able to faithfully reproduce the native mating response in nutrient-rich medium. Addition of synthetic pheromone to the responsive strain induces the formation of mating structures, and this response is abolished by mutations in genes encoding components of the pheromone signal transduction cascade. After recognition of pheromone, U. maydis cells arrest the cell cycle in a postreplicative stage. Visualization of the nucleus and microtubule organization indicates that the arrest takes place at the G2 phase. Chemical-induced cell cycle arrest and release in the presence of pheromone further support this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号