首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Motility on surfaces is an important mechanism for bacterial colonization of new environments. In this report, we describe detection of rapid surface motility in the wild-type Bacillus subtilis Marburg strain, but not in several B. subtilis 168 derivatives. Motility involved formation of rapidly spreading dendritic structures, followed by profuse surface colonies if sufficient potassium ion was present. Potassium ion stimulated surfactin secretion, and the role of surfactin in surface motility was confirmed by deletion of a surfactin synthase gene. Significantly, this motility was independent of flagella. These results demonstrate that wild-type B. subtilis strains can use both swimming and sliding-type mechanisms to move across surfaces.  相似文献   

2.
The ionic dependence of the trout sperm plasma membrane potential was analysed by measuring the accumulation of the lipophilic ions 3H-tetraphenylphosphonium (TPP) and 14C-thiocyanate (SCN) following dilution in artificial media isotonic to the seminal fluid. Our data showed that the trout sperm plasma membrane has a mixed conductance: the plasma membrane potential is sensitive upon the transmembrane gradients of K+, Na+, and H+. This potential is negative (less than -40 mV) in a 125 mM choline chloride media (ChM) at pH 8.5. Replacement of choline by sodium has a small depolarizing effect. The membrane potential is about -15 mV in a 125 mM potassium chloride and falls near zero mV only if valinomycin is added. In ChM changing the external pH (pHe) greatly affects the membrane potential: its value rises from less than -40 mV at pHe 9.0 to -17 mV at pHe 5.0. This pH effect is observed also in presence of sodium or potassium. A decrease in the transmembrane proton gradient produced by increasing internal pH without changing pHe induces also a depolarisation of the plasma membrane. In the different media in which trout sperm remain immotile after dilution (media with [K+] greater than 20-40 mM or a pH less than 7.5) the plasma membrane is more depolarized than in media allowing motility, suggesting a relationship between the state of membrane polarization and the intracellular effectors of the axonemal movement.  相似文献   

3.
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.  相似文献   

4.
Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1   总被引:15,自引:0,他引:15  
Flagellar motors of some alkalophilic Bacillus strains have been suggested to be powered by the electrochemical potential gradient of Na+, namely the (formula: see text) (Hirota, N., Kitada, M., and Imae, Y. (1981) FEBS Lett. 132, 278-280). In the present study, we quantitatively measured the (formula: see text) and motility of one of the strains, YN-1. Swimming speed of YN-1 cells increased linearly with a logarithmic increase of Na+ concentration in the medium up to 100 mM. The intracellular Na+ concentration and the membrane potential of the cell were about 30 mM and -170 mV, respectively, and stayed constant irrespective of Na+ concentration in the medium. Thus, the swimming speed changed as a function of the chemical potential difference of Na+ across the cell membrane. When the membrane potential of YN-1 cells was decreased by a combination of valinomycin and various concentrations of K+ in the medium, the swimming speed of the cells decreased linearly and reached zero at around -90 mV. Under the condition, the intracellular Na+ concentration stayed constant. Thus, the membrane potential was also a determinant of the swimming speed. Furthermore, the chemical potential of Na+ and the membrane potential were found to be equivalent as the energy source for motility. Therefore, it is concluded that the (formula: see text) is the energy source for the flagellar motors of YN-1 cells. Threshold value of the (formula: see text) for motility was about -100 mV.  相似文献   

5.
The atractyloside binding capacity of rat heart mitochondria, but not the binding affinity, was markedly decreased by preincubation of the mitochondria with valinomycin in isotonic KCl medium. Maximum inhibition was attained with 5 ng of valinomycin per mg of mitochondrial protein; it corresponded to a 40% decrease of the atractyloside binding capacity. The inhibitory effect of valinomycin was maximal between pH 7.0 and 7.5. It was more marked for heart mitochondria than for liver mitochondria. Valinomycin inhibition of atractyloside binding to heart mitochondria was counteracted by nigericin and FCCP, by sublytic concentrations of cationic surfactants such as cetyltrimethylammonium bromide, and by low concentrations of trivalent and divalent metal ions at acidic pH's still compatible with atractyloside binding, i.e., down to pH 5.5; trivalent metal ions were more effective than divalent metal ions. The effect of valinomycin was also counteracted by exceedingly high concentrations of K+ (more than 300 mM), resulting in a substantial increase in the ionic strength. These results were discussed in terms of the relation between the atractyloside binding capacity of the inner mitochondrial membrane and the surface potential of this membrane.  相似文献   

6.
The proton electrochemical gradient in Escherichia coli cells.   总被引:55,自引:0,他引:55  
The internal pH of Escherichia coli cells was estimated from the distribution of either 5,5-[14C]dimethyl-2,4-oxazolidinedione or [14C]methylamine. EDTA/valinomycin treatment of cells was employed to estimate delta psi from 86Rb+ distribution concomitant with the delta pH for calculation of delta muH. Respiring intact cells maintained an internal pH more alkaline by 0.63-0.75 unit than that of the milieu at extracellular pH 7, both in growth medium and KCl solutions. The delta pH decreased when respiration was inhibited by anaerobiosis or in the presence of KCN. The delta muH, established by EDTA/valinomycin-treated cells, was constant (122-129 mV) over extracellular potassium concentration of 0.01 mM-1 mM. At the lower potassium concentration delta psi (110-120 mV) was the predominant component, and at the higher concentration delta pH increased to 0.7 units (42 mV). At 150 mM potassium delta muH was reduced to 70 mV mostly due to a delta pH component of 0.89 (53 mV). The interchangeability of the delta muH components is consistent with an electronic proton pump and with potassium serving as a counter ion in the presence of valinomycin. Indeed both parameters of delta muH decreased in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone. The highest delta pH of 2 units was observed in the intact cells at pH 6; increasing the extracellular pH decreased the delta pH to 0 at pH 7.65 and to -0.51 at pH 9. A similar pattern of dependence of delta pH on extracellular pH was observed in EDTA/valinomycin-treated cells but the delta psi was almost constant over the whole range of extracellular pH values (6-8) implying electroneutral proton movement. Potassium is specifically required for respiration of EDTA-treated E. coli K12 cells since other monovalent or divalent cations could not replace potassium and valinomycin was not required.  相似文献   

7.
A voltage clamp inhibits chemotaxis of Spirochaeta aurantia.   总被引:9,自引:9,他引:0       下载免费PDF全文
Anaerobic conditions were employed to study the relationship between membrane potential and chemotaxis in Spirochaeta aurantia. When cells were grown anaerobically and suspended in anaerobic potassium phosphate buffer (pH 5.5), membranes did not appear to be polarized. Nevertheless, motility was supported by a transmembrane pH gradient, and the anaerobic cells exhibited D-xylose taxis. Introduction of trace amounts of air into anaerobic cell suspensions resulted in a transient membrane polarization. The addition of valinomycin to cells suspended under anaerobic conditions did not alter the steady-state value of membrane potential appreciably but served to clamp membrane potential at the preset level. Although there was no detectable effect of valinomycin on the motility of anaerobic cells in potassium phosphate buffer, D-xylose taxis was completely inhibited by this treatment. These data indicate the the action of valinomycin as a voltage clamp serves to inhibit the chemotaxis of S. aurantia and provide evidence to support the suggestion that the mechanism of chemotaxis in this organism involves the transduction of sensory signals in the form of membrane potential fluctuations.  相似文献   

8.
Nigericin, monensin, valinomycin + carbonyl-cyanide-m-chlorophenylhydrazone and gramicidin inhibit the respiration of Bacillus subtilis cells incubated with NAD-dependent substrates or succinate, but not with ascorbate + N,N,N',N'-tetramethyl-p- phenylene-diamine. The level of inhibition was decreased by potassium ions and, in a lower degree, by sodium or ammonium ions. The results obtained suggest that the respiration of Bacillus subtilis depends on the presence of monovalent cations whose effects seem to be directed at complexes I, III and probably complex II of the respiratory chain.  相似文献   

9.
1. Thermostable membrane vesicles which were capable of active transport of alanine dependent on either respiration or an artificial membrane potential were isolated from the thermophilic aerobic bacterium PS3. 2. Uptake of alanine was dependent on the oxidation of ascorbate-phenazine methosulfate or on generated or exogenous NADH, but succinate and malate failed to drive the uptake. The optimum temperature for respiration-driven uptake of alanine was 45 to 60 degrees. 3. Potassium ion-loaded vesicles were prepared by incubating vesicles at 55 degrees in 0.5 M potassium phosphate. The addition of valinomycin elicited rapid and transient uptake of alanine under the test conditions. Uptake of alanine in response to valinomycin was progressively enhanced by the addition of dicylohexylcarbodiimide, but was completely abolished in the presence of a proton conductor or synthetic permeable cation. The effect of dicyclohexylcarbodiimide was dependent on its concentration and was maximal at a concentration of 0.4 mM. 4. The proton permeability of membrane vesicles was reduced by the addition of dicyclohexylcarbodiimide. A small but significant difference was found in the initial rates of proton uptake in the presence of dicyclohexylcarbodiimide with and without alanine. The results suggest that protons alanine are transported simultaneously in a stoichiometric ratio of 1 : 1. 5. The uptake of alanine was also driven by a pH gradient induced by an instantaneous pH drop in a suspension of alkali-loaded vesicles. Thus, alanine accumulation was driven not only by an electrical potential but also by a pH gradient. 6. Addition of ATP resulted in the inhibition of alanine uptake dependent on artificial membrane potential. ATP hydrolysis by membrane ATPase created a membrane potential which was inside-positive, and this might decrease the effective membrane potential (generated by K+ efflux mediated by valinomycin) available to drive alanine uptake.  相似文献   

10.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

11.
Transient swimming was induced in energy-depleted cells of Bacillus subtilis by an artificial proton motive force, which was created by valinomycin addition and a pH reduction. This system did not require any ions except protons in the medium. The size of the induced motility was strongly influenced by changes in the size of either the K+ diffusion potential or the pH gradient. A rough estimation indicated that a proton motive force higher than -100 mV was required for induction of translational swimming of the cell. Corresponding with the transient appearance of swimming, a rapid but transient efflux of K+ and influx of H+ were observed. With decreases in the rate of H+ influx, the amount of motility decreased. A rate of H+ influx higher than 0.2 mumol/s per ml of cell water gave translational swimming. These results suggest direct coupling of H+ influx to rotation of bacterial flagella.  相似文献   

12.
Spherical droplets, derived from Physarum plasmodia by incubation in 10 mM caffeine, seemed to be an excellent system for electrophysiological studies because they were large (less than or equal to 300 micrometer in diameter) and because they tolerated intracellular electrodes filled with 3 M KCl and 10 mM EDTA for a few hours. Intact plasmodia, by contrast, gave valid records for only a few minutes. Under standard conditions ([K+]o = 1 mM, [Na+]o = 5 mM, [Ca++]0 = 0.5 mM, [Mg++]o = 2 mM, and [Cl-]o = 6 mM at pH 7.0), the potential difference across droplet membranes was -80 to -120mV, interior negative. The membrane potential was only slightly sensitive to concentration changes for the above-mentioned ions, and was far negative to the equilibrium diffusion potentials calculated from the known internal contents of K, Na, Ca, Mg, and CL (29.4, 1.6, 3.7, 6.5, and 27.8 mmol/kg, respectively). Variations of external pH did have a strong influence on the membrane potential, yielding a slope of 59 mV/pH between pH 6.5 and 5.5. In this pH range, however, the equilibrium potential for H+ (assuming 6.2 less than or equal to pHi less than or equal to 7.0) was greater than 75 mV positive to the observed membrane potential. Membrane potential was directly responsive to metabolic events, being lowered by potassium cyanide, and by cooling from 25 to 12 degrees C. This ensemble of results strongly indicates that the major component of membrane potential in plasmodial droplets of Physarum is generated by an electrogenic ion pump, probably one extruding H+ ions.  相似文献   

13.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

14.
The effects of valinomycin and nigericin on sugar chemotaxis in Spirochaeta aurantia were investigated by using a quantitative capillary assay, and the fluorescent cation, 3,3'-dipropyl-2,2'-thiodicarbocyanine iodide was used as a probe to study effects of chemoattractants on membrane potential. Addition of a chemoattractant, D-xylose, to cells in either potassium or sodium phosphate buffer resulted in a transient membrane depolarization. In the presence of valinomycin, the membrane potential of cells in potassium phosphate buffer was reduced, and the transient membrane depolarization that resulted from the addition of D-xylose was eliminated. Although there was no detectable effect of valinomycin on motility, D-xylose taxis of cells in potassium phosphate buffer was completely inhibited by valinomycin. In sodium phosphate buffer, valinomycin had little effect on membrane potential or D-xylose taxis. Nigericin is known to dissipate the transmembrane pH gradient of S. aurantia in potassium phosphate buffer. This compound did not dissipate the membrane potential or the transient membrane depolarization observed upon addition of D-xylose to cells in either potassium or sodium phosphate buffer. Nigericin did not inhibit D-xylose taxis in either potassium or sodium phosphate buffer. This study indicates that the membrane potential but not the transmembrane pH gradient of S. aurantia is somehow involved in chemosensory signal transduction.  相似文献   

15.
D. J. F. Bowling 《Planta》1966,69(4):377-382
Summary The electrical potential difference across exuding roots of Helianthus annuus in two strengths of complete culture solution was measured. The determination of the concentration of the major nutrient ions in the outside solution and the xylem sap enabled the Nernst potential for each ion to be calculated. A comparison of the measured and calculated potentials indicated that the anions NO3, SO4, H2PO4 and HPO4 were actively transported into the sap against the electrochemical potential gradient. The cations Ca and Mg, on the other hand, appeared to move passively into the sap. The behaviour of potassium depended on its concentration in the medium. With a relatively low external concentration (0.75 mM) it appeared to be actively tansported into the sap, whilst at higher outside concentrations (7.5 mM) it was apparently moving passively into the xylem down the electrochemical potential gradient. The possibility of potassium being pumped out of the sap with relatively high external concentrations is discussed.  相似文献   

16.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

17.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

18.
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into artificial dioleoylphosphatidylcholine vesicles. Transport activity was induced by adding ATP to the external medium. A voltage-sensitive dye was used to detect the ATP-driven potassium extrusion in the presence of valinomycin. The observed substrate-protein interactions of the reconstituted (Na+ + K+)-ATPase largely agree with that from native tissues. An agreement between ATP hydrolysis and transport activity is given for concentration dependences of sodium, potassium, magnesium and calcium ions. The only significant deviations were observed in the influence of pH. Protons were found to have different influence on transport, enzymatic activity and phosphorylation of the enzyme. The transport studies showed a twofold interaction of protons with the protein: competition with sodium at the cytoplasmic ion binding sites, a non competitive inhibition of transport which is not correlated with protein phosphorylation.  相似文献   

19.
Little or no motility is observed when sperm from 5 mammalian species are incubated in vitro in their cauda epididymal fluid (CEF). We examined the effects of pH, lactate, and viscoelastic drag on sperm motility to determine whether these factors are responsible for this inhibition of motility. The pHs of CEF from bull, dog, rat, guinea pig, and hamster were 5.8, 6.2, 6.9, 6.9, and 7.2, respectively. The lactate concentration of epididymal semen collected from anesthetized animals ranged from 0.6 to 0.9, but increased almost 10-fold in samples from rats or dogs when measured 2 h postmortem. Increasing the pH of CEF to 7.0 resulted in the initiation of full motility for bull and dog sperm. Suspensions of sperm in buffer at various pHs (from 4.0 to 7.6) produced a sigmoidal motility curve for all species. All species, including bull and dog, showed almost full motility in buffer at a pH equal to the pH of their own CEF. Motility of bull and dog sperm showed greater inhibition with decreasing pH when suspended in CEF instead of buffer. The addition of 15 mM lactate, which has been shown to lower sperm intracellular pH, shifted the motility versus pH curves of all species toward higher pH. In bull and dog the addition of lactate produced a motility profile that was indistinguishable from that in their own CEF. The viscoelastic drag of the CEF of only two species, rat and hamster, was sufficiently high to inhibit sperm motility. We conclude that the low pH of the CEF from bulls and dogs plus the presence of lactate is sufficient to cause inhibition of motility.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号