共查询到20条相似文献,搜索用时 0 毫秒
1.
The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific 总被引:1,自引:0,他引:1
In many cases, the vacuolar uptake of secondary metabolites has been demonstrated to be strictly specific for a given compound and plant species. While most plants contain glycosylated secondary substances, few cases are known where flavonoids may also carry negative charges, e.g. as glucuronide conjugates. Vacuolar transport of glucosylated phenylpropanoid derivatives has been shown to occur by proton substrate antiport mechanisms (Klein, M., Weissenb?ck. G., Dufaud, A., Gaillard, C., Kreuz, K., Martinoia, E., 1996. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J. Biol. Chem. 271, 29,666-29,671). In contrast, flavone glucuronides appearing specifically in rye mesophyll vacuoles are taken up by direct energisation utilising MgATP, strongly arguing for the presence of an ATP-binding cassette (ABC) transporter belonging to the subfamily of multidrug resistance-associated proteins (MRP) on the rye vacuolar membrane (Klein, M., Martinoia, E., Hoffmann-Thoma, G., Weissenb?ck, G., 2000. A membrane-potential dependent, ubiquitous ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides regulation of glucturonide uptake by glutathione and its conjugates. Plant Journal 21, 289-304). MRPs are known to transport negatively charged organic anions. Results presented here suggest that the vacuolar directly energised MRP-like glucuronate pump for plant-specific flavone glucuronides is ubiquitously present in diverse plant species since rye flavone glucuronides are taken up into vacuoles isolated from the barley mesophyll or from the broccoli stalk parenchyma representing two species which do not synthesise glucuronidated secondary compounds. According to the transport characteristics and inhibition profile observed we propose the existence of a high-capacity, uncoupler-insensitive vacuolar ABC transporter for flavone glucuronides and possibly other negatively charged organic compounds -- plant-born or xenobiotic -- irrespective of the plant's capability to endogenously produce glucuronidated compounds. 相似文献
2.
Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates 总被引:8,自引:0,他引:8
Bartholomew DM Van Dyk DE Lau SM O'Keefe DP Rea PA Viitanen PV 《Plant physiology》2002,130(3):1562-1572
Through the development and application of a liquid chromatography-mass spectrometry-based procedure for measuring the transport of complex organic molecules by vacuolar membrane vesicles in vitro, it is shown that the mechanism of uptake of sulfonylurea herbicides is determined by the ligand, glucose, or glutathione, to which the herbicide is conjugated. ATP-dependent accumulation of glucosylated chlorsulfuron by vacuolar membrane vesicles purified from red beet (Beta vulgaris) storage root approximates Michaelis-Menten kinetics and is strongly inhibited by agents that collapse or prevent the formation of a transmembrane H(+) gradient, but is completely insensitive to the phosphoryl transition state analog, vanadate. In contrast, ATP-dependent accumulation of the glutathione conjugate of a chlorsulfuron analog, chlorimuron-ethyl, is incompletely inhibited by agents that dissipate the transmembrane H(+) gradient but completely abolished by vanadate. In both cases, however, conjugation is essential for net uptake because neither of the unconjugated parent compounds are accumulated under energized or nonenergized conditions. That the attachment of glucose to two naturally occurring phenylpropanoids, p-hydroxycinnamic acid and p-hydroxybenzoic acid via aromatic hydroxyl groups, targets these compounds to the functional equivalent of the transporter responsible for chlorsulfuron-glucoside transport, confirms the general applicability of the H(+) gradient dependence of glucoside uptake. It is concluded that H(+) gradient-dependent, vanadate-insensitive glucoside uptake is mediated by an H(+) antiporter, whereas vanadate-sensitive glutathione conjugate uptake is mediated by an ATP-binding cassette transporter. In so doing, it is established that liquid chromatography-mass spectrometry affords a versatile high-sensitivity, high-fidelity technique for studies of the transport of complex organic molecules whose synthesis as radiolabeled derivatives is laborious and/or prohibitively expensive. 相似文献
3.
Cui Y König J Leier I Buchholz U Keppler D 《The Journal of biological chemistry》2001,276(13):9626-9630
Bilirubin, the end product of heme catabolism, is taken up from the blood circulation into the liver. This work identifies a high-affinity transport protein mediating the uptake of bilirubin and its conjugates into human hepatocytes. Human embryonic kidney cells (HEK293) permanently expressing the recombinant organic anion-transporting polypeptide 2 (human OATP2, also known as LST-1 or OATP-C; symbol SLC21A6) showed uptake of [(3)H]monoglucuronosyl bilirubin, [(3)H]bisglucuronosyl bilirubin, and [(3)H]sulfobromophthalein with K(m) values of 0.10, 0.28, and 0.14 microm, respectively. High-affinity uptake of unconjugated [(3)H]bilirubin by OATP2 occurred in the presence of albumin and was not mediated by another basolateral hepatic uptake transporter, human OATP8 (symbol SLC21A8). OATP2 and OATP8 differed by their capacity to extract substrates from albumin before transport. In comparison to the high-affinity transport by OATP2, OATP8 transported [(3)H]sulfobromophthalein and [(3)H]monoglucuronosyl bilirubin with lower affinity, with K(m) values of 3.3 and 0.5 microm, respectively. The organic anion indocyanine green potently inhibited transport mediated by OATP2, with a K(i) value of 112 nm, but did not inhibit transport mediated by OATP8. Human OATP2 may play a key role in the prevention of hyperbilirubinemia by facilitating the selective entry of unconjugated bilirubin and its glucuronate conjugates into human hepatocytes. 相似文献
4.
5.
Lazard M Ha-Duong NT Mounié S Perrin R Plateau P Blanquet S 《The FEBS journal》2011,278(21):4112-4121
The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed. 相似文献
6.
Summary. A series of polyamine conjugates were synthesized and evaluated for their ability to target the polyamine transporter (PAT)
in two Chinese hamster ovary (CHO) cell lines (PAT-active CHO and PAT-inactive CHOMG). This systematic study identified salient
features of the polyamine architecture required to target and enter cells via the PAT. Indeed, the separation of charges,
the degree of N-alkylation, and the spacer unit connecting the N1-terminus to the appended cytotoxic component (anthracene) were found to be key contributors to optimal delivery via the PAT.
Using the CHO screen, the homospermidine motif (e.g., 4,4-triamine) was identified as a polyamine vector, which could enable
the selective import of large N1-substituents (i.e., naphthylmethyl, anthracenylmethyl and pyrenylmethyl), which were cytotoxic to cells. The cell selectivity
of this approach was demonstrated in B-16 murine melanoma cells and normal melanocytes (Mel-A). Three polyamine areas (recognition
and transport, vesicle sequestration and polyamine-target interactions) were identified for future research. 相似文献
7.
The mechanisms by which acute administration of methapyrilene, an H(1)-receptor antihistamine causes periportal necrosis to rats are unknown. This study investigated the role of the hepato-biliary system in methapyrilene hepatotoxicity following daily administration of 150 mg/kg per day over 3 consecutive days. Biliary metabolites of methapyrilene were tentatively identified. In male Han Wistar rats administration of methapyrilene significantly increased hepatic reduced glutathione (GSH) to 140% of control levels 24 h following the last dose. There were no significant changes in the activities of glutathione-related enzymes, glutathione peroxidase (GPx) and reductase (GSH), glutathione S-transferase (GST), and gamma-glutamyl cysteine synthetase (gamma-GCS) over 3 days of methapyrilene administration. Methapyrilene treatment resulted in no significant increase in excretion of biliary oxidized glutathione (GSSG), a sensitive marker of oxidative stress in vivo, following the third dose. [3H]Methapyrilene-derived radioactivity was detected in bile, to a greater extent than in feces, indicating that methapyrilene and/or metabolites underwent enterohepatic recirculation. Cannulation and exteriorization of the bile duct (to interrupt enterohepatic recirculation) afforded some protection against the hepatotoxicity, assessed by clinical chemistry and histopathology. Liquid chromatography-mass spectrometry (LC-MS) analysis of bile indicated the presence of unmetabolized methapyrilene, methapyrilene O-glucuronide and desmethyl methapyrilene O-glucuronide. These data demonstrate that acute methapyrilene hepatotoxicity in vivo is not a consequence of GSH depletion, or oxidative stress, but that enterohepatic recirculation of biliary metabolites may be important. Progressive exposure to non-oxidizing, reactive metabolic intermediates may be responsible for hepatotoxicity. 相似文献
8.
Because of its simple and well characterized metabolic profile, 4-nitrophenol is widely used as a model substrate to investigate the influence of drug therapy, disease, nutrient deficiencies and other physiologically altered conditions on conjugative drug metabolism in animal studies. For simultaneous determination of 4-nitrophenol (PNP), 4-nitrophenyl-beta-D-glucuronide (PNP-G) and 4-nitrophenyl-sulfate (PNP-S) in samples generated in rat small intestine luminal perfusion experiments, an ion-pair HPLC assay coupled with UV detection was set up. The RP-HPLC separation was achieved with a methanol-water mixture (50:50, v/v) containing 0.01 M tetrabutyl-ammonium-bromide with UV detection of the analytes at 290 nm. The isocratic system was operated at ambient temperature and required less than 7 min of chromatographic time. The method provided good enough within-day precision, between-day precision and linearity in the target concentration ranges of 6-1200 microM (PNP) and 2.5-100 microM (PNP-G and PNP-S). The instrumental limit of quantification for PNP-G and PNP-S was found to be 2.7 microM and 2.1 microM, respectively. The assay was applied for determination of PNP, PNP-G and PNP-S in rat small intestine perfusates. 相似文献
9.
The non-metabolizable glucose analogue 2-deoxy-d-glucose is taken up by Pseudomonas aeruginosa against a concentration gradient, in a predominantly unchanged form. d-Glucose competitively inhibits 2-deoxy-d-glucose uptake and also causes a rapid exit of intracellular 2-deoxy-d-glucose. Thus these two sugars share the same stereospecific carrier system, and glucose transport can be studied reliably with 2-deoxy-d-glucose. The transport system is inducible, and is strongly repressed by a number of organic acids such as acetate, citrate, succinate, fumarate and malate, even in the presence of adequate excess of the inducer (d-glucose). Repression by organic acids can be relieved by transferring cells to a glucose medium, but in the presence of chloramphenicol the cells fail to recover from repression, indicating that the formation of the transport system involves the synthesis of protein. The results demonstrate that the regulation of glucose metabolism effected by citric acid-cycle intermediates in P. aeruginosa is manifest at the level of the glucose-transport system. 相似文献
10.
11.
Maccarrone M Bari M Lorenzon T Bisogno T Di Marzo V Finazzi-Agrò A 《The Journal of biological chemistry》2000,275(18):13484-13492
Anandamide (AEA) has vasodilator activity, which can be terminated by cellular re-uptake and degradation. Here we investigated the presence and regulation of the AEA transporter in human umbelical vein endothelial cells (HUVECs). HUVECs take up AEA by facilitated transport (apparent K(m) = 190 +/- 10 nm and V(max) = 45 +/- 3 pmol. min(-1).mg(-1) protein), which is inhibited by alpha-linolenoyl-vanillyl-amide and N-(4-hydroxyphenyl)-arachidonoylamide, and stimulated up to 2.2-fold by nitric oxide (NO) donors. The NO scavenger hydroxocobalamin abolishes the latter effect, which is instead enhanced by superoxide anions but inhibited by superoxide dismutase and N-acetylcysteine, a precursor of glutathione synthesis. Peroxynitrite (ONOO(-)) causes a 4-fold activation of AEA transport into cells. The HUVEC AEA transporter contributes to the termination of a typical type 1 cannabinoid receptor (CB(1)) -mediated action of AEA, i.e. the inhibition of forskolin-stimulated adenylyl cyclase, because NO/ONOO(-) donors and alpha-linolenoyl-vanillyl-amide/N-(4-hydroxyphenyl)-arachidonoylamide were found to attenuate and enhance, respectively, this effect of AEA. Consistently, activation of CB(1) cannabinoid receptors by either AEA or the cannabinoid HU-210 caused a stimulation of HUVEC inducible NO synthase activity and expression up to 2.9- and 2. 6-fold, respectively. Also these effects are regulated by the AEA transporter. HU-210 enhanced AEA uptake by HUVECs in a fashion sensitive to the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester. These findings suggest a NO-mediated regulatory loop between CB(1) cannabinoid receptors and AEA transporter. 相似文献
12.
Glucose induced translation of insulin in pancreatic beta cells is mediated by the 5'UTR of insulin mRNA. We determined the minimal sequence/structure in the 5'UTR of rat insulin gene1 for this regulation. We show that specific factors in the pancreatic islets bind to the 5'UTR of the insulin mRNA upon glucose stimulation. We identified a minimal 29-nucleotide element in the 5'UTR that is sufficient to form the complex, and confer glucose mediated translation activation. Conserved residues in the predicted stem loop region of the un-translated region (UTR) seem to be important for the complex formation and the translation regulation. 相似文献
13.
A Brüning T Ishikawa R E Kneusel U Matern F Lottspeich F T Wieland 《The Journal of biological chemistry》1992,267(11):7726-7732
Radioactively labeled brefeldin A was used to probe for proteins that interact with this metabolite. The most prominent protein labeled after in vivo incubation of Chinese hamster ovary cells with [3H]brefeldin A turned out to have an apparent molecular mass of 26 kDa. Radioactive peptides derived from the [3H]brefeldin A-labeled protein showed sequence identity with glutathione S-transferases, and immunoblotting after two-dimensional gel electrophoresis confirmed this result. In addition, Chinese hamster ovary cells convert the antibiotic to its glutathionyl and cysteinyl derivatives and secrete them rapidly into the medium. From these findings we conclude that detoxification of the antibiotic in mammalian cells occurs via the glutathion S-transferase system. This may explain the often observed reversibility of brefeldin A's action on the steady state of organelles in mammalian cells. 相似文献
14.
Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation 总被引:7,自引:0,他引:7
Desbrosses-Fonrouge AG Voigt K Schröder A Arrivault S Thomine S Krämer U 《FEBS letters》2005,579(19):4165-4174
The Arabidopsis thaliana metal tolerance protein 1 (MTP1) of the cation diffusion facilitator family of membrane transport proteins can mediate the detoxification of Zn in Arabidopsis and yeast. Xenopus laevis oocytes expressing AtMTP1 accumulate more Zn than oocytes expressing the AtMTP1(D94A) mutant or water-injected oocytes. An AtMTP1-GFP fusion protein localizes to the vacuolar membrane in root and leaf cells. The analysis of Arabidopsis transformed with a promoter-GUS construct suggests that AtMTP1 is not produced throughout the plant, but primarily in the subpopulation of dividing, differentiating and expanding cells. RNA interference-mediated silencing of AtMTP1 causes Zn hypersensitivity and a reduction in Zn concentrations in vegetative plant tissues. 相似文献
15.
Asparagine uptake in rat hepatocytes: Resolution of a paradox and insights into substrate-dependent transporter regulation 总被引:3,自引:0,他引:3
Summary. Extracellular asparagine has previously been shown to markedly stimulate both ornithine decarboxylase and System N-mediated
glutamine transport activities in hepatocytes by a transport-dependent mechanism. However, as a weak substrate of its inferred
transporter System N, the specific route of asparagine uptake has remained enigmatic. In this study, asparagine transport
was studied in detail and shown to be Na+-dependent, Li+-tolerant, stereospecific, and inhibited profoundly by glutamine and histidine. Coupled with competitive inhibition by glutamine
(Ki = 2.63 ± 1.11 mM), the data indicated that asparagine was indeed slowly transported by System N in rat hepatocytes, albeit
at rates an order of magnitude less than for glutamine. The differential substrate transport velocities were shown to be attributable
to a low transporter asparagine affinity (Km = 9.3 − 17.5 mM) compared to glutamine (Km∼ 1 mM). Consistent with its slow uptake, asparagine accumulated to a fivefold lesser degree than glutamine after 60 min,
yet stimulated System N activity to the same extent as glutamine. The transaminase inhibitor aminooxyacetate and starvation
of the donor animal each enhanced asparagine uptake twofold and augmented subsequent transporter activation. Conversely, asparagine-dependent
System N stimulation was abrogated by hyperosmotic media and blunted 30%–40% by phosphatidylinositol 3-kinase (PI3K) inhibitors
wortmannin and LY294002. Collectively, the data suggest that System N-mediated asparagine uptake serves an autostimulatory
role, mediated by cellular swelling and in part by a PI3K-dependent signal transduction pathway.
Received January 3, 2000 Accepted May 18, 2000 相似文献
16.
The immunosuppressive drug cyclosporin A (CsA) inhibited the hCRT-1 cDNA-induced creatine uptake in Xenopus oocytes and the endogenous creatine uptake in cultured C(2)C(12) muscle cells in a dose- and time-dependent manner. FK506, another potent immunosuppressant, was unable to mimic the effect of CsA suggesting that the inhibitory effect of CsA was specific. To delineate the mechanism underlying, we investigated the effect of CsA on the K(m) and V(max) of creatine transport and also on the cell surface distribution of the creatine transporter. Although CsA treatment did not affect the K(m) (20-24 microm) for creatine, it significantly decreased the V(max) of creatine uptake in both oocytes and muscle cells. CsA treatment reduced the cell surface expression level of the creatine transporter in the muscle cells by approximately 60% without significantly altering its total expression level, and the reduction in the cell surface expression paralleled the decrease in creatine uptake. Taken together, our results suggest that CsA inhibited creatine uptake by altering the surface abundance of the creatine transporter. We propose that CsA impairs the targeting of the creatine transporter by inhibiting the function of an associated cyclophilin, resulting in an apparent loss in surface expression of the creatine transporter. Our results also suggest that prolonged exposure to CsA may result in chronically creatine-depleted muscle, which may be a cause for the development of CsA-associated clinical myopathies in organ transplant patients. 相似文献
17.
Uemura T Tachihara K Tomitori H Kashiwagi K Igarashi K 《The Journal of biological chemistry》2005,280(10):9646-9652
The subcellular localization of the polyamine transporter TPO1 of Saccharomyces cerevisiae was determined by sucrose gradient centrifugation and indirect immunofluorescence microscopy. When expressed from a multi-copy vector, TPO1 was located mainly on the plasma membrane, but with some localization on the vacuolar membrane. Polyamine transport by TPO1 was dependent on pH. Uptake of spermidine and spermine occurred at alkaline pH (pH 8.0), whereas inhibition of spermidine uptake, but not spermine uptake, was observed at acidic pH (pH 5.0). This suggests that TPO1 catalyzes polyamine excretion at acidic pH, similar to the PotE transporter in Escherichia coli. Paraquat, a polyamine analogue, was excreted by TPO1 at a rate comparable with the excretion of spermidine (deduced from the inhibition of spermidine uptake) at pH 5.0. However, excretion of preloaded radiolabeled spermidine and spermine was not observed in intact cells, suggesting that preloaded spermidine (or spermine) exists mainly as spermidine (or spermine)-ribosome complex in cells. The transport activity of TPO1 was enhanced through phosphorylation at Ser19 by protein kinase C and at Thr52 by casein kinase 1. Sorting of TPO1 from the endoplasmic reticulum to the plasma membrane was enhanced through phosphorylation at Ser342 by cAMP-dependent protein kinases 1 and 2. 相似文献
18.
The metabolism of styrene by prostaglandin hydroperoxidase and horseradish peroxidase was examined. Ram seminal vesicle microsomes in the presence of arachidonic acid or hydrogen peroxide and glutathione converted styrene to glutathione adducts. Neither styrene 7,8-oxide nor styrene glycol was detected as a product in the incubation. Also, the addition of styrene 7,8-oxide and glutathione to ram seminal vesicle microsomes did not yield styrene glutathione adducts. The peroxidase-generated styrene glutathione adducts were isolated by high pressure liquid chromatography and characterized by NMR and tandem mass spectrometry as a mixture of (2R)- and (2S)-S-(2-phenyl-2-hydroxyethyl)glutathione. (1R)- and (1S)-S-(1-phenyl-2-hydroxyethyl)glutathione were not formed by the peroxidase system. The addition of phenol or aminopyrine to incubations, which greatly enhances the oxidation of glutathione to a thiyl radical by peroxidases, increased the formation of styrene glutathione adducts. We propose a new mechanism for the formation of glutathione adducts that is independent of epoxide formation but dependent on the initial oxidation of glutathione to a thiyl radical by the peroxidase, and the subsequent reaction of the thiyl radical with a suitable substrate, such as styrene. 相似文献
19.
We studied the effects of the infusion of lithocholate and lithocholate-3-sulfate and 3-glucuronide in rats (0.29 mumol/min per 100 g body weight for 40 min) on bile flow, together with their biliary excretion and metabolism. Lithocholate-glucuronide had a higher cholestatic effect than lithocholate, whereas lithocholate-sulfate had almost no effect on bile flow. Lithocholate was mainly converted to taurine or glucuronide conjugates in the bile, serum and liver and hydroxylation of the tauro-conjugate proceeded. Lithocholate-sulfate was almost completely excreted in the bile, mainly as tauro-conjugate. Lithocholate-glucuronide was excreted in bile almost without conjugation, while some taurine conjugation occurred in the serum and liver. These results suggest that the poor biotransformation of lithocholate-glucuronide is related to its higher cholestatic potency than lithocholate. 相似文献