首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The possibility that sodium from the serosal bathing medium back-diffuses into the active sodium transport pool within the mucosal epithelial cell of the isolated toad bladder was examined by determining the effect on the metabolism of the tissue of removing sodium from the serosal medium. It was expected that if recycling of serosal sodium did occur through the active transepithelial transport pathway of the isolated toad bladder, removal of sodium from the serosal medium would reduce the rate of CO2 production by the tissue and enhance the stoichiometric ratio of sodium ions transported across the bladder per molecule of sodium transport dependent CO2 produced simultaneously by the bladder (J Na/J CO 2). The data revealed no significant change in this ratio (17.19 with serosal sodium and 16.13 after replacing serosal sodium with choline). Further, when transepithelial sodium transport was inhibited (a) by adding amiloride to the mucosal medium, or (b) by removing sodium from the mucosal medium, subsequent removal of sodium from the serosal medium, or (c) addition of ouabain failed to depress the basal rate of CO2 production by the bladder [(a) rate of basal, nontransport related, CO2 production (J CO2 b ) equals 1.54±0.52 with serosal sodium and 1.54±0.37 without serosal sodium; (b)J CO2 b equals 2.18±0.21 with serosal sodium and 2.09±0.21 without serosal sodium; (c) 1.14±0.26 without ouabain and 1.13±0.25 with ouabain; unite ofJ CO2 b are nmoles mg d.w.–1 min–1]. The results support the hypothesis that little, if any, recycling of serosal sodium occurs in the toad bladder.  相似文献   

2.
Summary Recent results from this laboratory have indicated the existence of two potassium compartments in the isolated toad bladder. Only one of these, containing less than 10% of total intracellular potassium, appears to be related to the sodium transport system, since potassium influx at the serosal border of this compartment is coupled to the sodium efflux which occurs there. Ouabain, which specifically inhibits serosal sodium exit, has no effect on potassium fluxes and compartment sizes in bladders mounted in normal (2.5mm K) Ringer's solution. However, in the presence of this inhibitor, removal of serosal potassium results in a significant decrease in the rate coefficient for potassium efflux into the serosal medium, while an increase in serosal potassium results in a significant rise in this parameter, which appears to saturate at approximately 5mm K. This sensitivity to serosal potassium is seen neither in the absence of ouabain nor when the sodium pump is inactivated by removal of sodium from the mucosal medium. Furosemide, which also inhibits the sodium transport system, both inhibits potassium transport parameters in normal Ringer's and abolishes the potassium-sensitive potassium efflux seen in the presence of ouabain. Thus, the Na–K pump appears to operate as a K–K exchanger when the sodium system is inhibited by ouabain; this K–K exchange mechanism is inhibited by furosemide. One explanation for these results is that ouabain effects an alteration in the affinities of the transport system for sodium and potassium.  相似文献   

3.
Fluxes of D-xylose-1-C14 (xylose) across the wall of the isolated intestine of the bullfrog were studied. When sodium was the principal cation in the mucosal bathing fluid, the transport rate of xylose from the mucosa to the serosa was about 5 times greater than the transport rate from the serosa to the mucosa, indicating an active intestinal transport for this sugar. With potassium as the principal cation on the mucosal side, the transport rate of xylose from the mucosal to the serosal compartment is reduced about 5 to 6 times without appreciable change in the serosal to mucosal transport. The asymmetry was also considerably reduced when ouabain was added to the mucosal and serosal compartments. The data confirm the in vitro and in vivo observations indicating active transport of xylose and are also in accord with the earlier findings that active transport of sugars in the intestine is dependent upon the presence of sodium ions in the mucosal compartment and is inhibited by cardioactive steroids. Since the chemical constitution of xylose does not meet the requirements which were hitherto considered necessary for active transport of sugars in the intestine, this structural requirement has to be revised.  相似文献   

4.
Summary Toad urinary bladders were exposed on either their mucosal or serosal surfaces, or on both surfaces, to medium in which sodium was replaced completely by lithium. With mucosal lithium Ringer's, serosal sodium Ringer's, short-circuit current (SCC) declined by about 50 percent over the first 60 min and was then maintained over a further 180 min. Cellular lithium content was comparable to the sodium transport pool. With lithium Ringer's serosa, SCC was abolished over 60 to 120 min whether the mucosal cation was sodium or lithium. Measurements of cellular ionic composition revealed that the epithelial cells gained lithium from both the mucosal and serosal media. With lithium Ringer's mucosa and serosa, cells lost potassium and gained lithium and a little chloride and water, but these changes in cellular ions could not account for the current flow across the tissue under these conditions, which must, therefore, have been carried by a transepithelial movement of lithium itself. The inhibition by serosal lithium of SCC was overcome by exposure of the mucosal surface of the bladders to amphotericin B. Thus it reflected, predominantly, an inhibition of lithium entry to the cells across the apical membrane. It is suggested that this inhibition is a consequence of cellular lithium accumulation.  相似文献   

5.
6.
High potassium diets lead to an inverse regulation of sodium and magnesium absorption in ruminants, suggesting some form of cross talk. Previous Ussing chamber experiments have demonstrated a divalent sensitive Na(+) conductance in the apical membrane of ruminal epithelium. Using patch-clamped ruminal epithelial cells, we could observe a divalent sensitive, nonselective cation conductance (NSCC) with K(+) permeability > Cs(+) permeability > Na(+) permeability. Conductance increased and rectification decreased when either Mg(2+) or both Ca(2+) and Mg(2+) were removed from the internal or external solution or both. The conductance could be blocked by Ba(2+), but not by tetraethylammonium (TEA). Subsequently, we studied this conductance measured as short-circuit current (I(sc)) in Ussing chambers. Forskolin, IBMX, and theophylline are known to block both I(sc) and Na transport across ruminal epithelium in the presence of divalent cations. When the NSCC was stimulated by removing mucosal calcium, an initial decrease in I(sc) was followed by a subsequent increase. The cAMP-mediated increase in I(sc) was reduced by low serosal Na(+) and serosal addition of imipramine or serosal amiloride and depended on the availability of mucosal magnesium. Luminal amiloride had no effect. Flux studies showed that low serosal Na(+) reduced (28)Mg fluxes from mucosal to serosal. The data suggest that cAMP stimulates basolateral Na(+)/Mg(2+) exchange, reducing cytosolic Mg. This increases sodium uptake through a magnesium-sensitive NSCC in the apical membrane. Likewise, the reduction in magnesium uptake that follows ingestion of high potassium fodder may facilitate sodium absorption, as observed in studies of ruminal osmoregulation. Possibly, grass tetany (hypomagnesemia) is a side effect of this useful mechanism.  相似文献   

7.
Vasopressin increases the net transport of sodium across the isolated urinary bladder of the toad by increasing the mobility of sodium ion within the tissue. This change is reflected in a decreased DC resistance of the bladder; identification of the permeability barrier which is affected localizes the site of action of vasopressin on sodium transport. Cells of the epithelial layer were impaled from the mucosal side with glass micropipettes while current pulses were passed through the bladder. The resulting voltage deflections across the bladder and between the micropipette and mucosal reference solution were proportional to the resistance across the entire bladder and across the mucosal or apical permeability barrier, respectively. The position of the exploring micropipette was not changed and vasopressin was added to the serosal medium. In 10 successful impalements, the apical permeability barrier contributed 54% of the initial total transbladder resistance, but 98% of the total resistance change following vasopressin occurred at this site. This finding provides direct evidence that vasopressin acts to increase ionic mobility selectively across the apical permeability barrier of the transporting cells of the toad bladder.  相似文献   

8.
The effects of theophylline and dibutyryl cyclic AMP, on in vitro unidirectional galactose fluxes across the mucosal and serosal borders of rabbit ileum have been studied. 1. When Ringer [galactose] = 2mM, theophylline and dibutyryl cyclic AMP reduce both mucosal-serosal and serosal-mucosal galactose flux by approx. 50%. The K1 for theophylline inhibition of flux in both directions is 2 mM. 1 mM dibutyryl cyclic AMP elicits a maximal inhibitory response. Concurrent with the inhibition in transmural galactose fluxes, theophylline and dibutyryl cyclic AMP increase the tissue accumulation of [galactose] and the specific-activity ratio R of 3H : 14C-labelled galactose coming from the mucosal and serosal solutions respectively. It is deduced that theophylline and dibutyryl cyclic AMP are without effect on the mucosal unidirectional permeability to galactose but cause a symmetrical reduction in serosal entry and exit permeability. 2. Reduction in the asymmetry of the mucosal border to galactose by reducing Ringer [Na], raising Ringer [galctose] or adding ouabain reduces the theophylline-dependent increase in galactose accumulation. 3. Hypertonicity in the serosal solution increases the permeability of the serosal border to galactose and reduces tissue galactose accumulation. Serosal hypertonicity partially reverses the theophylline-depedent effects on galactose transport. Replacing Ringer chloride by sulphate abolishes the theophylline-dependent effects on galactose transport. 4. It is considered that the theophylline-dependent increase in galactose accumulation results from the reduction in serosal permeability. This is shown to be a quantitatively consistent inference. 5. Further support for the view that the asymmetric transport of galactose in rabbit ileum results from convective-diffusion is presented.  相似文献   

9.
By Ussing's flux chamber method the effect of ATP and acetylcholine (ACh) on the sodium transport was studied in bullfrog colon. The results obtained are as follows; 1. ATP added to the mucosal medium caused biphasic changes in the transmural potential difference (P.D.) and short-circuit current (S.C.C.), although serosal ATP was ineffective. After an initial rapid and transient rise, both the P.D. and S.C.C. increased in parallel to reach a peak in about 10 min suggesting that the tissue conductance is little affected by ATP. Addition of ouabain to the serosal fluid depressed both the P.D. and S.C.C. and abolished the electrical responses to ATP. The application of ouabain to the mucosal side did not cause any significant depression. These results can be explained in terms of stimulation of sodium pump by ATP added to the mucosal medium. 2. ACh added to either the mucosal or the serosal medium caused increased in the P.D. and the S.C.C. The serosal application was more effective than the mucosal application. The increase in S.C.C. was more remarkable than that in the P.D., indicating an increase in the tissue conductance. It is suggested that ACh stimulates ion transport systems by changing the membrane permeability of the colon.  相似文献   

10.
Studies have been made on the isolated urinary bladder of the toad, Bufo marinus, in an attempt to evaluate gradients of chemical activity across the mucosal surfaces of the epithelial cells which would serve to maintain a net movement of sodium from the mucosal medium into the cells. The likelihood of such chemical gradients has been established by the demonstration of lower contents of sodium within the tissue, expressed as microequivalents per gram of tissue water, than of concentrations of sodium in the mucosal medium at all levels of the latter examined. The transepithelial transport of sodium and the sodium content of the tissue were found to increase rapidly with rise in concentration of sodium in the mucosal medium up to values of 30 to 60 meq per liter. Further increase in concentration of the medium above this value failed to induce further stimulation of sodium transport or increase in the sodium content of the tissue. Vasopressin increased the rate of transport of sodium at every concentration of sodium in the mucosal medium without altering this relationship. Although entry of sodium across the mucosal surface of the epithelial cells may be passive it is not by free diffusion but involves some considerable interaction with the mucosal surface of the bladder and constitutes the major determinant of the rate of transepithelial transport of sodium. Vasopressin acts to enhance this initial step in the transport of sodium.  相似文献   

11.
Active sodium transport by the isolated toad bladder   总被引:33,自引:17,他引:33       下载免费PDF全文
Studies were made of the active ion transport by the isolated urinary bladder of the European toad, Bufo bufo, and the large American toad, Bufo marinus. The urinary bladder of the toad is a thin membrane consisting of a single layer of mucosal cells supported on a small amount of connective tissue. The bladder exhibits a characteristic transmembrane potential with the serosal surface electrically positive to the mucosal surface. Active sodium transport was demonstrated by the isolated bladder under both aerobic and anaerobic conditions. Aerobically the mean net sodium flux across the bladder wall measured with radioactive isotopes, Na24 and Na22, just equalled the simultaneous short-circuit current in 42 periods each of 1 hour's duration. The electrical phenomenon exhibited by the isolated membrane was thus quantitatively accounted for solely by active transport of sodium. Anaerobically the mean net sodium flux was found to be slightly less than the short-circuit current in 21 periods of observation. The cause of this discrepancy is not known. The short-circuit current of the isolated toad bladder was regularly stimulated with pure oxytocin and vasopressin when applied to the serosal surface under aerobic and anaerobic conditions. Adrenaline failed to stimulate the short-circuit current of the toad bladder.  相似文献   

12.
  • 1.1. Isolated midguts of the freshwater snail Biomphalaria glabrata were mounted in an incubation chamber in saline containing 2 mM glucose and perfused with the same solution. External and internal media were continuously gassed with carbogen gas (95% O2, 5% CO2). In order to measure the flux rates of glucose [14C]glucose was applied in the perfusion medium or in the incubation medium. Net fluxes of glucose were calculated as the differences between unidirectional in- and effluxes.
  • 2.2. A directed net flux from the mucosal to the serosal side of the intestine was demonstrated (mucosal to serosal = 50 ± 10 nmol cm−2hr−1(N = 6) serosal to mucosal 7 ± 1 nmol cm−2hr−1 (N = 6), net flux = 43 nmol cm−2hr−1).r
  • 3.3. The active transport of glucose was reduced by the presence of metabolic inhibitors, cyanide (1 mM) and dinitrophenol (1 mM) on the mucosal as well as on the serosal side. Ouabain (1 mM) inhibited the transport rate only when it was added on the serosal side. Amiloride (1 mM) had no effect on the transport rate whether added on the mucosal or on the serosal side.
  • 4.4. Inhibition of glucose transport by oubain, a specific inhibitor of Na+/K+-ATPase, suggests that glucose transport is secondary active and coupled to Na+-transport.
  相似文献   

13.
Summary The extracellular Ca2+ requirement for antidiuretic hormone (ADH) stimulation of water permeability in the toad urinary bladder has been critically examined. The polarity of the tissue was maintained with 1mm Ca2+ in the mucosal bathing medium and a serosal bath nominally free of Ca2+. Under these condition, ADH-induced osmotic water flow was inhibited by more than 60% while enhancement of the diffusional permeability to water was unaffected. Structural studies revealed that low serosal Ca2+ led to parallel alterations in epithelial architecture that amounted to a significant distorition of the osmotic water pathway. Prevention of these alterations, or restoration of normal cell-cell contact showed that the reduction of serosal Ca2+ did not restrict hormonal action,per se, but that it resulted in a weakening of cell-cell junctions such that intercellular space distension during water flow occurred to a point where the geometric conditions for maintenance of osmotic flow were compromised. We conclude that extracellular Ca2+ is not a requirement for the molecular aspects of ADH action but that, in its absence, a direct measurement of ADH-induced osmotic flow proves to be an inaccurate index of the hormone-generated changes in epithelial transport characteristics. Under certain conditions the ADH-effect on the tissue's hydraulic permeability is probably best assessed by measurement of the diffusional permability to water; although accuracy in this determination is difficult, it is not as strongly dependent on tissue geometry.  相似文献   

14.
Summary The bulk of the intracellular potassium in mucosal epithelial cells from toad urinary bladder has been previously reported to exchange very slowly with the serosal medium, with a half-time of some 9 hr. This observation, based on chemical analyses of mucosal cell scrapings, has been reexamined with simultaneous diffractive and energy dispersive electron probe X-ray microanalysis. Fifty-three intracellular sites in hydrated sections and 286 sites in dehydrated sections were studied in bladders from eight toads under baseline conditions and after removal of serosal K+ for 83–133 min, with or without 10–2 m ouabain. The baseline data confirm and extend previous examinations of the intracellular ionic composition, and provide the most direct measure of intracellular water thus far available for this tissue. Removal of serosal K+ reduced the intracellular K+ content by 20%, increased intracellular Na+ content threefold, and slightly reduced the intracellular Cl and water contents, qualitatively consistent with published chemical analyses. The intracellular Na+ content of mucosal origin, measured by radioactive tracers and chemical analyses of cell scrapings, has been reported to be unchanged under these conditions Simultaneous addition of ouabain and removal of external K+ produced a dramatic fall in intracellular K+ of more than 80% in a third of the cells and reduced the mean intracellular K+ content by 60%; 20% of the cells appeared to retain K+ more effectively than the bulk of the epithelial cell population. We conclude that: (i) the low rate of net exchange of intracellular K+ with the serosal bulk solution primarily reflects recycling of K+ across the basolateral membranes, (ii) radioactive tracer and chemical measurements of the intracellular Na+ pool of mucosal origin substantially underestimate the total intracellular Na+ content under certain experimental conditions, and (iii) the epithelial cells display a functional heterogeneity of response to the effects of adding ouabain and withdrawing external K+.  相似文献   

15.
16.
Sodium movement across the luminal membrane of the toad bladder is the rate-limiting step for active transepithelial transport. Recent studies suggest that changes in intracellular sodium regulate the Na permeability of the luminal border, either directly or indirectly via increases in cell calcium induced by the high intracellular sodium. To test these proposals, we measured Na movement across the luminal membrane (th Na influx) and found that it is reduced when intracellular Na is increased by ouabain or by removal of external potassium. Removal of serosal sodium also reduced the influx, suggesting that the Na gradient across the serosal border rather than the cell Na concentration is the critical factor. Because in tissues such as muscle and nerve a steep transmembrane sodium gradient is necessary to maintain low cytosolic calcium, it is possible that a reduction in the sodium gradient in the toad bladder reduces luminal permeability by increasing the cell calcium activity. We found that the inhibition of the influx by ouabain or low serosal Na was prevented, in part, by removal of serosal calcium. To test for the existence of a sodium- calcium exchanger, we studied calcium transport in isolated basolateral membrane vesicles and found that calcium uptake was proportional to the outward directed sodium gradient. Uptake was not the result of a sodium diffusion potential. Calcium efflux from preloaded vesicles was accelerated by an inward directed sodium gradient. Preliminary kinetic analysis showed that the sodium gradient changes the Vmax but not the Km of calcium transport. These results suggest that the effect of intracellular sodium on the luminal sodium permeability is due to changes in intracellular calcium.  相似文献   

17.
Addition of 446 micron prostaglandin E1 (PGE1) to the serosal medium of isolated short-circuited bullfrog small intestine elicited small increases transmural potential difference and short-circuit current while addition of PGE1 to the mucosal medium caused no change in the electrical parameters. Addition of 100 micron indomethacin to the mucosal medium inhibited both potential difference and short-circuit current with a resultant increase in steady-state tissue resistance. In the presence of mucosal 100 micron indomethacin, serosal 60 micron PGE1 markedly stimulated transmural potential difference and short-circuit current with a resultant decrease in steady-state tissue resistance. Serosal arachidonic acid (330 micron) stimulated transmural potential difference and short-circuit current and this effect was abolished by the addition of 100 micron indomethacin to the mucosal medium. Serosal 60 micron PGE1 only stimulated the M (mucosa) leads to S (serosa) unidirectional flux of sodium. These results strongly suggest that the PGE1 action is mediated either via a series of metabolic reactions which possibly increase the permeability of the mucosal membrane to sodium or via direct stimulation of rheogenic sodium pump activity.  相似文献   

18.
A compartmental model of toad bladder sodium content has been developed, whereby it is possible to measure the four unidirectional fluxes across the opposite faces of the transport compartment, as well as the amount of sodium in the compartment. 24Na is added to the mucosal medium of a short-circuited bladder mounted between halves of a chamber in which the fluid is stirred by rotating impellers. After a steady state is reached, nonradioactive medium is flushed through both sides of the chamber, collected, and counted. The data from each chamber are fitted to sums of exponentials and interpreted in terms of conventional compartmental analysis. Three exponentials are required, with half-times of 0.2, 2.2, and 14.0 min. It is shown that the first of these represents chamber washout, the second the transport pool, and the third a tissue compartment which is not involved in active sodium transport and which does not communicate with the transport pool. The second compartment contains 10.5 µEq of sodium per 100 mg dry weight, an amount equal to approximately 30% of total tissue sodium. The results also indicate, as expected from electrophysiological data, that the mucosal-facing side of the transport compartment is over 10 times as permeable to sodium as the serosal, or pump, side.  相似文献   

19.
Summary Mucosal hypertonicity, produced by the addition of NaCl, KCl, mannitol, urea, sucrose or raffinose, reduced the electrical resistance of toad urinary bladder and induced bullous deformations (blisters) of the most apical junctions of the mucosal epithelium: the smaller solutes were most effective in eliciting both phenomena. Study of the effect of addition and subsequent removal of mannitol from the mucosal medium indicated that both the electrical and morphologic changes are reversible and follow the same time course. Mucosal hypertonicity induced comparable changes in the tissue in the presence or absence of inhibition of active sodium transport by replacement of sodium by choline, or by addition of ouabain or amiloride. Dilution of the tonicity of the serosal medium similarly reduced the tissue resistance and induced blisters within the epithelium, demonstrating that the osmotic gradient, rather than the mucosal hypertonicity itself is the cause of the osmotically-induced resistance change. The data indicate, therefore, that the osmotic gradient reduces the electrical resistance of the tissue primarily by deforming the apical junctions.The simplest interpretation of the data is that the apical tight junctions are considerably more permeable to water and small solutes than had previously been thought. Addition of solute to the mucosal medium leads to the diffusion of solute into the junctions: the subsequent transfer of water from the lateral intercellular spaces and/or the adjacent cellular cytoplasm, deforms these structures and reduces the resistance to the passage of ions across the tissue. The results suggest that the apical junctions constitute the rate-limiting permeability barrier of the putative parallel shunt pathway across toad bladder.  相似文献   

20.
1. The effects of ion substitution and various inhibitors on the transmucosal potential, short circuit current, mucosal resistance and acid secretion of the lizard gastric mucosa, incubated in an Ussing chamber, have been determined. 2. Ion substitution experiments indicate that the serosal potential step consists of a combined C1- and K+ diffusion potential, and that the mucosal potential step is Na+ dependent and behaves primarily as a Na+ diffusion potential. 3. Experiments with ouabain indicate that the major (Na+, K+)-ATPase activity responsible for maintenance of cation gradients is located on the serosal side of the mucosal cells, and that this pump activity is non-electrogenic. 4. Experiments with amiloride indicate that a passive sodium influx on the mucosal side is essential for the maintenance of the transmucosal potential and short circuit current. 5. Acid secretion requires the presence of sodium and chloride on the serosal side and the maintenance of a high intracellular potassium level through the (Na+, K+)-ATPase system. 6. The effects of acetazolamide and thiocyanate are compatible with an involvement of carbonic anhydrase and anion-dependent ATPase in acid secretion. 7. Upon initiation of acid secretion the serosal membrane permeability for chloride increases and that for potassium decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号