首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.  相似文献   

2.
Osteoprotegerin (OPG) is a soluble receptor for receptor activator of NF kappa B-ligand, a factor required for osteoclastogenesis. OPG secreted from bone marrow stromal cells is believed to inhibit osteoclast differentiation and several agents known to influence bone resorption have been demonstrated to regulate mRNA levels of OPG. In this report we have investigated the secretion of OPG protein from primary cultures of human bone marrow stromal cells. An ELISA was developed for measuring the concentration of OPG in culture medium. OPG secretion was decreased by 50% when the human bone marrow stromal cells were treated with 1 microM of prostaglandin E(2), possibly through activation of the protein kinase A-pathway since stimulation of protein kinase A by forskolin also inhibited OPG secretion. Treatment with phorbol 12,13 di butyrate, an activator of the protein kinase C-pathway, potently stimulated the secretion of OPG from human bone marrow stromal cells. The cells were also stimulated with inflammatory mediators and glucocorticoids. Treatment with interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) stimulated OPG secretion to 500% and 400% of control whereas dexamethasone decreased OPG production by 40%. In conclusion, an ELISA measuring OPG in cell culture media was developed. Using this ELISA, the amount of OPG secreted from human bone marrow stromal cells was clearly detectable, and the secretion of OPG-protein was potently regulated by prostaglandin E(2), forskolin, phorbol 12,13 di butyrate, IL-1 alpha, TNF-alpha, and dexamethasone.  相似文献   

3.
The homing of hemopoietic stem cells to the bone marrow is mediated by specific interactions occurring between CXCR4, which is expressed on hemopoietic stem cells, and its ligand, stromal cell-derived factor-1 (SDF-1), a CXC chemokine secreted by bone marrow stromal cells. In the present study we evaluated the possibility that neuroblastoma cells use a mechanism similar to that used by hemopoietic stem cells to home to the bone marrow and adhere to bone marrow stromal cells. Our study suggests that CXCR4 expression may be a general characteristic of neuroblastoma cells. SH-SY5Y neuroblastoma cells express not only CXCR4, but also its ligand, SDF-1. CXCR4 expression on SH-SY5Y neuroblastoma cells is tightly regulated by tumor cell-derived SDF-1, as demonstrated by the ability of neutralizing Abs against human SDF-1alpha to up-regulate CXCR4 expression on the tumor cells. The reduction in CXCR4 expression following short term exposure to recombinant human SDF-1alpha can be recovered as a result of de novo receptor synthesis. Recombinant human SDF-1alpha induces the migration of CXCR4-expressing SH-SY5Y neuroblastoma cells in CXCR4- and heterotrimeric G protein-dependent manners. Furthermore, SH-SY5Y cells interact at multiple levels with bone marrow components, as evidenced by the fact that bone marrow-derived constituents promote SH-SY5Y cell migration, adhesion to bone marrow stromal cells, and proliferation. These results suggest that SH-SY5Y neuroblastoma cells are equipped with adequate machinery to support their homing to the bone marrow. Therefore, the ability of neuroblastoma tumors to preferentially form metastases in the bone marrow may be influenced by a set of complex CXCR4-SDF-1 interactions.  相似文献   

4.
J C Vera  L F Congote 《In vitro》1979,15(2):138-141
A substance that stimulates growth of colonies of mononuclear granulocytic cells derived from the bone marrow of mice was produced by incubating fetal liver cells (conditioned medium). This substance appears to have the same properties described elsewhere as colony-stimulating factor (CSF). The enhanced stimulatory ability of the conditioned medium from human fetal liver cells compared to medium not conditioned suggests that fetal liver is a potent source of colony-stimulating factor.  相似文献   

5.
Summary A substance that stimulates growth of colonies of mononuclear granulocytic cells derived from the bone marrow of mice was produced by incubating fetal liver cells (conditioned medium). This substance appears to have the same properties described elsehwere as colony-stimulating factor (CSF). The enhanced stimulatory ability of the conditioned medium fromhuman fetal liver cells compared to medium not conditioned suggests that fetal liver is a potent source of colony-stimulating factor.  相似文献   

6.
Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.  相似文献   

7.
In the following experiments, we sought to understand the triggering mechanism which propels galectin-3 to be secreted into the extracellular compartment from its intracellular stores in breast carcinoma cells. We also wanted to analyze in greater details the role of galectin-3 in cellular adhesion and spreading. To do this, we made use of two pairs of breast carcinoma cell lines where one of the pair has high expression of galectin-3 and the other low expression of the lectin. We determined that galectin-3 secreted into the conditioned medium of sub-confluent and spread cells in culture was quite low, almost negligible. However, once the cells were detached and rounded up, a mechano-sensing mechanism triggered the rapid secretion of galectin-3 into the conditioned medium. The secretion was constitutive as long as the cells remained detached. Galectin-3 was shown to be actively taken up from the conditioned medium by spreading cells. The cells which express and secrete high levels of galectin-3 adhered and spread much faster on plastic than those with reduced expression. The uptake of galectin-3 according to our data was important in cell spreading because if this process was compromised significantly, cells failed to spread. The data suggested that galectin-3 uptake modulates the adhesion plaques in that cells which express high levels of galectin-3 have thin-dot like plaques that may be suited for rapid adhesion and spreading while cells in which galectin-3 expression is reduced or knocked-down, have thick and elongated plaques which may be suited for a firmer adhesion to the substratum. Recombinant galectin-3 added exogenously reduced the thickness of the adhesion plaques of tumor cells with reduced galectin-3 expression. Taken together, the present data suggest that galectin-3 once externalized, is a powerful modulator of cellular adhesion and spreading in breast carcinoma cells.  相似文献   

8.
Osteoclast‐mediated bone resorption precedes osteoblast‐mediated bone formation through early adulthood, but formation fails to keep pace with resorption during aging. We previously identified several factors produced by osteoclasts that promote bone formation. In this study, we determined if osteoclast‐produced factors contribute to the impaired bone formation with aging. We previously found that mice between the ages of 18 and 22 months develop age‐related bone loss. Bone marrow‐derived pre‐osteoclasts were isolated from 6‐week, 12‐month, and 18‐ to 24‐month‐old mice and differentiated into osteoclasts in vitro. Conditioned media were collected and compared for osteoblast mineralization support. Conditioned medium from osteoclasts from all ages was able to support mineralization of bone marrow stromal cells. Concentrating the conditioned medium from 6‐week‐old and 12‐month‐old mouse marrow cells‐derived osteoclasts enhanced mineralization support whereas concentrated conditioned medium from 18‐ to 24‐month‐old mouse marrow‐derived osteoclasts repressed mineralization compared to base medium. This observation suggests that an inhibitor of mineralization was secreted by aged murine osteoclasts. Gene and protein analysis revealed that the Wnt antagonist sclerostin was significantly elevated in the conditioned media from 24‐month‐old mouse cells compared to 6‐week‐old mouse cells. Antibodies directed to sclerostin neutralized the influences of the aged mouse cell concentrated conditioned media on mineralization. Sclerostin is primarily produced by osteocytes in young animals. This study demonstrates that osteoclasts from aged mice also produce sclerostin in quantities that may contribute to the age‐related impairment in bone formation. J. Cell. Biochem. 114: 1901–1907, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Mechanical stimulation by intermittent compressive force (ICF) stimulates bone formation and inhibits bone resorption in cultured fetal mouse bone. Fetal bone tissue can produce autocrine factors that stimulate bone cell replication and matrix formation, and paracrine factors that increase the formation of osteoclast precursor-like cells from bone marrow. In the present study, we have tested whether ICF affects the production of such local factors in fetal mouse calvariae. Calvariae were cultured for 4 days in the presence and absence of ICF (130 mbar, 0.3 Hz). Conditioned medium was collected daily and pooled. We found that conditioned medium from ICF-exposed cultures stimulated [3H]-TdR incorporation into DNA, and [3H]-proline incorporation into collagenase digestible protein but not into non-collagen protein in fresh calvarial cultures. Treatment with conditioned medium from ICF-exposed cultures had earlier effects on [3H]-TdR and [3H]-proline incorporation than direct treatment with ICF. Conditioned medium from ICF-exposed cultures decreased the number of osteoclast precursor-like cells in bone marrow cultures stained for tartrate-resistant acid phosphatase. We conclude that ICF stimulates the release (activity) of an autocrine growth-factor from bone. In addition, ICF can stimulate the release (activity) of a paracrine factor, inhibiting the growth and/or differentiation of osteoclast precursor-like cells. These data suggest that mechanical forces may modulate skeletal (re)modeling by affecting the production of local growth factors.  相似文献   

10.
11.
The stimulation of granulocyte macrophage-colony stimulating factor (GM-CSF) by interleukin-1 (IL-1) has been shown to be counteracted in different mesenchymal cell systems by cyclic adenosine monophosphate (cAMP) agonists. The aim of this study was the evaluation of different cAMP agonists on GM-CSF expression in human bone marrow stromal cells. Incubation of secondary haematopoietic progenitor cell deprived human stromal cell cultures with IL-1 or TNF-alpha induced GM-CSF protein expression in culture supernatants and GM-CSF-mRNA in adherent stromal cells. The coincubation with 8-bromo-cAMP (8BrcAMP), a water soluble cAMP analogue, inhibited this GM-CSF stimulation at the protein and the mRNA level. This effect was dose dependent with a maximal inhibition of about 65% occurring at a 8BrcAMP concentration of 0.75 mM. In addition to 8BrcAMP, other cAMP agonists such as dibutyryl-cAMP, forskolin, pertussis toxin, or prostaglandin E2 (PGE2) had the same inhibitory effect on GM-CSF stimulation by IL-1. Coincubation with the cyclooxygenase inhibitor indomethacin had no significant influence on GM-CSF expression in stromal cells. Our results provide evidence that the previously described inhibitory effect of cAMP agonist PGE2 on haematopoietic progenitor cells in vivo is, at least in part, mediated by modulating the expression of GM-CSF in bone marrow stromal cells.  相似文献   

12.
Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1–4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
The effects of L-cell conditioned medium which contains granulocyte/macrophage colony stimulating factor (CSF); of highly purified L-cell CSF; and the antiserum directed against L-cell CSF, have been investigated in long-term murine bone marrow cultures. Treatment of cultures with CSF containing conditioned medium led to a rapid decline in haemopoiesis. However, this inhibition of in vitro haemopoiesis is probably caused by materials other than CSF, since the addition of highly purified L-cell CSF had no appreciable effect upon long-term haemopoietic cell proliferation or differentiation. Furthermore, the inhibitory activity of L-cell conditioned medium was not abrogated following neutralization of the CSF activity by CSF antiserum. The direct addition of CSF antiserum did not inhibit granulocyte or macrophage formation. These results suggest that long-term cultures of murine marrow cells may show extensive interactions with stromal cells which are not influenced by exogenous stimulatory or inhibitory factors.  相似文献   

15.
Wnt signaling regulates hemopoiesis through stromal cells.   总被引:6,自引:0,他引:6  
Hemopoietic cells develop in a complex milieu that is made up of diverse components, including stromal cells. Wnt genes, which are known to regulate the fate of the cells in a variety of tissues, are expressed in hemopoietic organs. However, their roles in hemopoiesis are not well characterized. In this study, we examined the roles of Wnt proteins in hemopoiesis using conditioned medium containing Wnt-3a. This conditioned medium dramatically reduced the production of B lineage cells and myeloid lineage cells, except for macrophages in the long-term bone marrow cultures grown on stromal cells, although the sensitivity to the conditioned medium differed, depending on the hemopoietic lineage. In contrast, the same conditioned medium did not affect the generation of B lineage or myeloid lineage cells in stromal cell-free conditions. These results suggested that Wnt proteins exert their effects through stromal cells. Indeed, these effects were mimicked by the expression of a stabilized form of beta-catenin in stromal cells. In this study, we demonstrated that Wnt signaling regulates hemopoiesis through stromal cells with selectivity and different degrees of the effect, depending on the hemopoietic lineage in the hemopoietic microenvironment.  相似文献   

16.
Galectin-3 (gal-3) is a β-galactoside binding protein present in multivalent complexes with an extracellular matrix and with cell surface glycoconjugates. In this context, it can deliver a variety of intracellular signals to modulate cell activation, differentiation and survival. In the hematopoietic system, it was demonstrated that gal-3 is expressed in myeloid cells and surrounding stromal cells. Furthermore, exogenous and surface gal-3 drive the proliferation of myeloblasts in a granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent manner. Here, we investigated whether gal-3 regulates the formation of myeloid bone marrow compartments by studying galectin-3(-/-) mice (gal-3(-/-)) in the C57BL/6 background. The bone marrow histology of gal-3(-/-) mice was significantly modified and the myeloid compartments drastically disturbed, in comparison with wild-type (WT) animals. In the absence of gal-3, we found reduced cell density and diaphyseal disorders containing increased trabecular projections into the marrow cavity. Moreover, myeloid cells presented limited capacity to differentiate into mature myeloid cell populations in gal-3(-/-) mice and the number of hematopoietic multipotent progenitors was increased relative to WT animals. In addition, bone marrow stromal cells of these mice had reduced levels of GM-CSF gene expression. Taken together, our data suggest that gal-3 interferes with hematopoiesis, controlling both precursors and stromal cells and favors terminal differentiation of myeloid progenitors rather than proliferation.  相似文献   

17.
Zhou XY  Wang QR  Huang YH  Cheng LM  Tan MQ 《生理学报》2005,57(2):199-204
本文通过制备小鼠骨髓内皮细胞无血清条件培养液(serum-free murine bone marrow endothelial cell conditioned medium, mBMEC-CM),经超滤分为分子量>10 kDa组分和<10 kDa组分,分别观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞集落生成的影响。用Wright’S Giemsa染色计数内皮细胞集落及检测骨髓内皮细胞的vWF,通过[3H]- TdR掺入量,观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞增殖的影响,并用分子杂交方法检测内皮细胞表达的细胞因子,从几个方面来研究mBMEC-CM对骨髓内皮细胞增殖的作用。结果显示,骨髓内皮细胞vWF 检测阳性。mBMEC-CM原液及其分子量>10 kDa组分能刺激骨髓内皮细胞集落增殖,且能明显增加骨髓内皮细胞[3H]-TdR 掺入量;分子量<10 kDa组分对骨髓内皮细胞集落增殖无明显刺激作用,也不能增加骨髓内皮细胞[3H]-TdR掺入量。外源加入IL-6、IL-11、SCF、GM-CSF、VEGF、bFGF 6种细胞因子能明显刺激骨髓内皮细胞集落增殖,SCF、VEGF、bFGF能明显增加骨髓内皮细胞[3H]-TdR掺入量。Atlas array膜杂交实验显示骨髓内皮细胞内源性表达GM-CSF、SCF、MSP-1、endothelin-2、thymosin β10、connective tissue GF、PDGF-A chain、MIP-2α、PlGF、neutrophil activating protein ENA-78、INF-γ、IL-1、IL-6、IL-13、IL-11、inhibin-α等细胞因子的mRNA。上述结果提示,骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖具有促进作用。  相似文献   

18.
Myofibroblasts, also known as activated fibroblasts, constitute an important niche for tumor development through the promotion of angiogenesis. However, the mechanism of stromal fibroblast activation in tumor tissues has not been fully understood. A gastric cancer mouse model (Gan mice) was recently constructed by simultaneous activation of prostaglandin (PG) E2 and Wnt signaling in the gastric mucosa. Because both the PGE2 and Wnt pathways play a role in human gastric tumorigenesis, the Gan mouse model therefore recapitulates the molecular etiology of human gastric cancer. Microvessel density increased significantly in Gan mouse tumors. Moreover, the expression of vascular endothelial growth factor A (VEGFA) was predominantly induced in the stromal cells of gastric tumors. Immunohistochemistry suggested that VEGFA-expressing cells in the stroma were alpha-smooth muscle actin-positive myofibroblasts. Bone marrow transplantation experiments indicated that a subset of gastric myofibroblasts is derived from bone marrow. Importantly, the alpha-smooth muscle actin index in cultured fibroblasts increased significantly when stimulated with the conditioned medium of Gan mouse tumor cells, indicating that gastric tumor cells activate stromal fibroblasts. Furthermore, conditioned medium of Gan mouse tumor cells induced VEGFA expression both in embryonic and gastric fibroblasts, which further accelerated the tube formation of human umbilical vein endothelial cells in vitro. Notably, stimulation of fibroblasts with PGE2 and/or Wnt1 did not induce VEGFA expression, thus suggesting that factors secondarily induced by PGE2 and Wnt signaling in the tumor cells are responsible for activation of stromal fibroblasts. Such tumor cell-derived factors may therefore be an effective target for chemoprevention against gastric cancer.  相似文献   

19.
Osteoclasts (OCs), which form by fusion of hematopoietic precursor cells, are typically present in large numbers in giant cell tumors of bone (GCTBs). These tumors may, therefore, contain cells which secrete factors that stimulate recruitment and differentiation of OC precursors. Multinucleated cells resembling OCs also form in cultures of human cord blood monocytes (CBMs) stimulated by 1.25 dihydroxyvitamin D3, but these cells lack the ability to form bone resorption pits, the defining functional characteristic of mature OCs. CBMs may thus require additional stimulation to form OCs; we therefore investigated whether GCTBs are a source of such a stimulus. CBMs were stimulated in long term (21 day) culture by medium conditioned by explants of GCTBs; media collected within 15 days of explant (early-CM) and after 15 days (late-CM) were employed. We also cocultured CBMs with primary GCTB-derived stromal cells as well as immortalized bone marrow stroma-derived cells. CBMs stimulated by early-CM formed resorption pits on cortical bone slices; however, stimulation by late-CM resulted in virtually no resorption. Both early-CM and late-CM increased CBM proliferation, but not the proportion of vitronectin receptor positive or multinucleated cells. Coculture of CBMs with stromal cells of GCTBs or bone marrow did not result in bone resorption, although these stromal cells (most expressing alkaline phosphatase but progressively losing parathyroid hormone receptor expression) expressed mRNA for cytokines involved in OC differentiation, including macrophage-CSF, granulocyte-macrophage-CSF, IL-11, IL-6, and stem cell factor. Our results indicate that CBMs are capable of terminal OC differentiation in vitro, a process requiring 1,25 dihydroxyvitamin D3 as well as diffusible factor(s) which can be derived from GCTB. Stromal cells of GCTB may produce such factors in vivo, but do not support OC differentiation in vitro, possibly through phenotypic instability in culture. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号