首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Formation of extracellular matrix structures in cultures of rat liver epithelial nontransformed cell line IAR2 was studied with antisera to fibronectin, laminin and type IV collagen by immunofluorescence and immunoelectron microscopy of platinum replicas. Fibronectin formed peripheral spots of variable size some of which outlined free cell edges, as well as fibrils located towards the center of single cells or of cellular islands. Similarly distributed structures were seen in isolated matrices. Codistribution of fibronectin and actin was observed only for the peripheral line of fibronectin spots and marginal circular actin bundle. Basement membrane components. laminin and type IV collagen, formed mainly spots of variable size predominantly beneath the cell or each cell in an island. Occasional fibrils were seen also. Essentially the same results were obtained by immunofluorescence and immunogold electron microscopy. Cytochalasin D treated cells displayed spots of both fibronectin and laminin. The relevance of previously postulated receptor-mediated assembly of extracellular matrix structures to the epithelial cells is discussed.  相似文献   

2.
Forty two surgical specimens containing myofibroblasts were studied to clarify the criteria for identifying the fibronexus, an ultrastructural feature regarded as a marker for myofibroblastic differentiation. Granulation tissue, tumour stroma, fibro-proliferative lesions (nodular fasciitis, myofibromatosis, inflammatory myofibroblastic tumour) and malignancies (myofibrosarcoma and fibrosarcoma) were studied. Comparable results were found throughout these specimens, although fibronexus junctions were better developed in reactive compared with tumoral myofibroblasts. By electron microscopy, myofibroblasts were identified by abundant rough endoplasmic reticulum, peripheral smooth-muscle myofilaments with focal densities, and fibronexus junctions. The latter were recognised as the points of convergence on the myofibroblast surfaces of intracellular myofilaments and extracellular fibronectin fibrils. The fibronectin fibrils were often co-linear with myofilaments. Also, fibronectin fibrils were dark-staining, straight and rigid-looking, and had a longitudinal filamentous substructure. A striking feature was the tendency of fibronectin fibrils to project into the surrounding extracellular space, away from the myofibroblast surface: in these respects, they differed significantly from lamina ("basement membrane"). The presence of fibronectin fibrils correlated positively with fibronectin immunostaining by light and electron microscopy. Laminin and collagen IV showed variable and weak staining in the intercellular spaces in a minority of cases and never strongly stained myofibroblast surfaces. The data emphasise that the fibronexus has a number of distinctive features permitting identification, and constitute a reference-point for pathologists wishing to use electron microscopy to refine light microscopy diagnoses of putative myofibroblastic lesions. The role of the fibronexus in the definition of the myofibroblast is discussed.  相似文献   

3.
4.
Thrombin, a serine protease generated at wound sites, takes part in multiple biological functions, including wound healing. The present report elucidates the effect of thrombin on fibronectin (FN) synthesis and secretion in fibroblasts and epithelial cells. Subconfluent cultures of mouse LB fibroblasts and human A549 epithelial cells were exposed to various concentrations of bovine plasma thrombin at 37 degrees C for 16 hr. After exposure, cells were processed for determination of cell-associated and secreted FN by metabolic labeling, immunoprecipitation, immunofluorescence, and peroxidase immunocytochemistry. The correlation of FN production with cell growth was studied by a combined procedure of peroxidase immunocytochemistry and light microscopic autoradiography. The amounts of cell-associated and secreted FN were significantly increased with dose increments of thrombin. The increases were most evident in secreted FN. The increase of cell-associated FN was also evidenced by results from immunofluorescence and immunocytochemical studies. Ultrastructurally, the intracellular FN was localized in rough endoplasmic reticulum, Golgi complexes, and secretory granules, whereas non-released extracellular FN was localized in the plasma membrane of cell-to-cell contacts and in the extracellular fibrils. More intense cytoplasmic FN staining was observed in cells that were not labeled with [3H]-thymidine, indicating that FN production may vary with different phases of cell growth. The results imply that thrombin may play an important role in the early phases of wound healing.  相似文献   

5.
The fibronexus ( FNX ), a very close transmembrane association of individual extracellular fibronectin fibers and actin microfilaments, was found previously at the substrate-binding surface of fibroblasts in tissue culture (Singer, 1. 1., 1979, Cell, 16:675-685). To determine whether the fibronexus might be involved in fibroblast adhesion during wound healing in vivo, we looked for co-localization of actin and fibronectin in granulation tissue formed within full-thickness guinea pig skin wounds. At 7-9 d, most of the actin fibers were observed to be coincident with congruent fibronectin fibers using double-label immunofluorescence microscopy. These fibronectin and actin fibers were co-localized at the myofibroblast surface surrounding the nucleus, and along attenuated myofibroblast processes which extended deeply into the extracellular matrix. This conspicuous co-distribution of fibronectin and actin fibers prompted us to look for fibronexuses at the myofibroblast surface with electron microscopy. We observed three kinds of FNXs : (a) tandem associations between the termini of individual extracellular fibronectin fibers and actin microfilament bundles at the tips of elongate myofibroblast processes, (b) plaque-like and, (c) track-like FNXs , in which parallel fibronectin and actin fibers were connected by perpendicular transmembranous fibrils. Goniometric studies on the external and internal components of these cross-linking fibrils showed that their membrane-associated ends are probably co-axial. Using immunoelectron microscopy on ultrathin cryosections, we confirmed that the densely staining external portion of these various FNXs does indeed contain fibronectin. The finding that these FNXs appear to connect collagen fibers to intracellular bundles of actin microfilaments is particularly significant. Our studies strongly suggest that the fibronexus is an important in vivo cell surface adhesion site functioning in wound repair, and perhaps within fibronectin-rich tissues during embryogenesis, tumor growth, and inflammation.  相似文献   

6.
Cultured human endothelial cells synthesize and secrete both fibronectin and factor VIII-related antigen (VIIIR:Ag). In immunofluorescence microscopy, intracellular fibronectin was seen diffusely perinuclearly whereas VIIIR:Ag was located both diffusely in the perinuclear cytoplasm and in distinct rod-shaped granules. These granules could, moreover, be visualized with fluorochrome-coupled Ricinus communis agglutinin I (RCA), which also stained the Golgi apparatus as a reticular juxtanuclear structure, and they were identified as Weibel-Palade bodies by immunoelectron microscopy. Puromycin treatment depleted intracellular fibronectin but did not affect the granular localization of VIIIR:Ag. A short exposure of the cells to monensin caused a juxtanuclear accumulation of fibronectin at the Golgi region whereas VIIIR:Ag only was seen in rounded cytoplasmic granules. A prolonged monensin treatment brought about a cytoplasmic accumulation of fibronectin-containing vesicles whereas VIIIR:Ag showed no accumulation and there was no codistribution between granules containing fibronectin or VIIIR:Ag. Type IV procollagen, on the other hand, was distinctly co-localized with fibronectin. In monensin-treated cells RCA mainly stained the VIIIR:Ag-containing vesicles whereas Concanavalin A (Con A) appeared to label the fibronectin-containing vesicles. Immunoelectron microscopy of these cells revealed VIIIR:Ag in some vacuolar structures and typical Weibel-Palade bodies could not be identified. Exposure of the cells to tunicamycin, on the other hand, caused a prominent cytoplasmic accumulation of VIIIR:Ag and, within 96 h, led to the disappearance of most of the VIIIR:Ag-positive granules but did not affect the intracellular distribution of fibronectin. These results, which show that metabolical inhibitors affect differently the intracellular compartmentalization of fibronectin and VIIIR:Ag, indicate, that the two glycoproteins have divergent intracellular pathways in cultured human endothelial cells.  相似文献   

7.
The major cell surface glycoprotein of chick embryo fibroblasts, cellular fibronectin (formerly known as CSP or LETS protein), was purified and used to produce monospecific antisera. After affinity purification, the anti-fibronectin was used to investigate fibronectin's localization, its transfer from intracellular to extracellular pools, its antibody-induced redistribution on the cell surface, and its role in cell shape. Anti-fibronectin localizes to extracellular fibrils located under and between sparse cells, and to a dense matrix that surrounds confluent cells. Cellular fibronectin is also present in granular intracytoplasmic structures containing newly synthesized fibronectin before secretion. This intracellular staining disappears 2 h after treatment with cycloheximide or puromycin, and returns after removal of these protein synthesis inhibitors. In pulse-chase experiments using cycloheximide, fibronectin was sequentially transferred from the intracellular to the fibrillar extracellular forms. Transformation of chick fibroblasts results in decreases in both extracellular and intracellular fibronectin, and in altered cell shape. Treatment of untransformed chick fibroblasts with anti-fibronectin results in rapid (30 min) alteration to a rounder cell shape resembling that of many transformed cells. These rapid shape changes are followed by a slow, antibody-induced redistribution of fibronectin to supranuclear caplike structures. This "capping" is inhibited by metabolic inhibitors. Reconstitution of cell surface fibronectin onto transformed cells restores a more normal fibroblastic phenotype. The reconstituted fibronectin on these cells organizes into fibrillar patterns similar to those of untransformed cells. As with untransformed cells, treatment of these reconstituted cells with anti-fibronectin also results in cell rounding and "capping" of fibronectin.  相似文献   

8.
Using double-label techniques with fluorochrome-conjugated peanut agglutinin (PNA) and indirect immunofluorescence with rabbit species-specific anti-fibronectin antibodies and a mouse monoclonal anti-fibronectin, the extracellular matrix (ECM) of cultured human and mouse fibroblasts (Hell7 and 3T3K) and human bladder epithelial cells (T24) was studied. The antibodies and PNA co-localized extensively. However, a small but consistent degree of micro-heterogeneity was revealed insofar as both PNA-positive fibronectin-negative fibrils as well as PNA-negative fibronectin-positive fibrils were observed. Fibronectin production by T24 cells (but not fibroblasts) was influenced by the growth medium, but this did not affect the heterogeneity. Trypsin removed most cell-surface fibronectin and all PNA-binding sites, but did not account for the observed phenomenon. Intracellular fibronectin, whether present naturally or induced to accumulate by culture in presence of Monensin, was PNA-negative. These data suggest that PNA-binding sites appear on fibronectin as a consequence of incorporation into the extracellular matrix, and that the resultant heterogeneity of spatial expression of beta-galactose-like residues may offer a mechanism whereby mesenchymal cells could modulate the behaviour of overlying cell-types.  相似文献   

9.
Exogenous plasma and endogenous cellular fibronectins on the surface of cultured fibroblasts and in extracellular matrix fibrils were colocalized by fluorescent and high voltage immunoelectron microscopy. Fibroblast cultures grown in the presence or absence of cycloheximide were incubated with exogenous plasma fibronectin labeled with fluorescein isothiocyanate. A monoclonal antibody specific for the EIIIA sequence of cellular fibronectin was used to detect cellular fibronectin. A rabbit antifluorescein antibody identified fluoresceinated plasma fibronectin. In cultures incubated in the presence of cycloheximide, plasma fibronectin was bound to the cell surface and was assembled into extracellular fibrils. In cultures grown in the absence of cycloheximide, plasma and cellular fibronectins were observed in the same matrix fibrils and in the same locations on the cell surface. There was not, however, random admixture of the two proteins.  相似文献   

10.
Thrombospondin (TSP) is a multifunctional protein synthesized by several cell types in culture, among them endothelial cells, and incorporated into the extracellular matrix (ECM) of these cells. In vitro it has been detected in most interstitial spaces, and its presence has been suggested to be developmentally controlled. With the aim of elucidating the role of TSP in the extracellular matrix, we studied the build-up of this protein in the matrix as a function of cell type density and age in culture. The development of the TSP matrix was compared to that of fibronectin (FN) and of von Willebrand Factor (VWF) in the same cultures using our monoclonal anti-TSP antibody B7-3 and monospecific anti-FN or anti-VWF antibodies. In cultures of bovine aortic endothelial cells (BAEC) we observed that both the pattern and distribution of TSP in the matrix changed with cell density and time in culture; it started as a completely amorphous dense layer of protein when the cells were sparse and changed to well organized fibrils when the cells had been confluent for a while. The first appearance of the fibrillar arrays of TSP coincides perfectly with that of the FN fibers; extracellular VWF also was first detected at this point. From this time in culture, there was an increasing coincidence of the TSP with the FN and the VWF matrices suggesting the formation of a complex multicomponent structure of the fibrillar network.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
AFM对人乳腺癌细胞外纤连蛋白原纤维的形态学观察   总被引:4,自引:0,他引:4  
探讨原子力显微镜在研究细胞和细胞外基质间的相互作用及细胞外基质的功能等方面的应用前景。应用原子力显微镜观察培养的人乳腺癌MCF 7 R细胞分泌的纤连蛋白原纤维的分布和排列规律 ,并与其他常规观察技术进行比较。应用原子力显微镜获得了多个乳腺癌细胞和细胞外纤连蛋白原纤维的整体和局部形貌图像 ,发现这些原纤维的分布和排列方式非常有规律 ,而且这些规律与其功能相适应。由于样品制备简单和分辨率较高等优点 ,原子力显微镜较适合于细胞外基质的原位观察  相似文献   

12.
To examine whether collagen is assembled into fibrils within or outside fibroblasts, the connective tissue of the rat foot pad was investigated by electron microscopy and by radioautography at times varying from 4 min to 3 days after an intravenous injection of 3H-proline. The fibroblasts of the rat food pad are long polarized cells with the nucleus at one end, the Golgi apparatus in the center, and a region with long processes at the other end. This region contains secretory granules and is considered to be the secretory pole of the cell. In the Golgi apparatus the stacks of saccules are separated from rough endoplasmic reticulum (rER) by groups of "intermediate vesicles" including similarly structured tubules which may be over 300 nm long and are referred to as "intermediate tubules." The Golgi saccules exhibit distended portions which differ at the various levels of the stack. On the cis side, the distentions tend to be spherical and contain fine looping threads; in the middle of the stack, they are cylindrical and present distinct straight threads; whereas on the trans side, they are again cylindrical, but the straight threads are grouped in parallel aggregates. Between these cylindrical distentions and the secretory granules, there are transitional forms within which thread aggregates are packaged more and more tightly. Finally, the fibroblasts are associated with two types of collagen fibrils: extracellular ones arranged into large groups between the cells and intracellular ones located within long intracytoplasmic channels. Quantitative radioautography after 3H-proline injection reveals that the number of silver grains per unit area reaches a peak over the rER at 4-10 min, Golgi apparatus at 40 min, secretory granules at 60 min, and extracellular collagen fibrils at 3 h. At no time are intracellular collagen fibrils labeled. Qualitative observations further indicate that spherical Golgi distentions are mainly labeled at 40 min, and cylindrical distentions, at 60 min. In addition, from 20 min to 3 hr, some lysosomal elements are labeled. The biogenetic pathway leading to the formation of collagen fibrils is interpreted as follows.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

14.
Transforming growth factor-beta (TGF-beta 1) suppresses cortisol production when added to cultured bovine adrenocortical (BAC) cells while concomitantly increasing fibronectin synthesis and assembly into extracellular fibrils. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of gelatin-Sepharose-treated media from BAC cells demonstrated a 2-fold stimulation of fibronectin production by TGF-beta 1 in both the presence and absence of serum. Indirect immunofluorescence studies revealed that TGF-beta 1 caused a striking increase in the fibronectin content of BAC extracellular matrix. TGF-beta 1 caused a 4-fold increase in deoxycholate-insoluble fibronectin after 12 h and a 7-fold increase after 24 h over that of control BAC cultures. Northern hybridization analyses indicated that TGF-beta 1 stimulated levels of fibronectin poly(A)+ RNA 2.3-fold. We found that cultured BAC cells express TGF-beta 1 mRNA, suggesting a possible autocrine role for TGF-beta 1 in the adrenal.  相似文献   

15.
Among the structural components of extracellular matrices (ECM) fibrillar collagens play a critical role, and single amino acid substitutions in these proteins lead to pathological changes in tissues in which they are expressed. Employing a biologically relevant experimental model consisting of cells expressing R75C, R519C, R789C, and G853E procollagen II mutants, we found that the R789C mutation causing a decrease in the thermostability of collagen not only alters individual collagen molecules and collagen fibrils, but also has a negative impact on fibronectin. We propose that thermolabile collagen molecules are able to bind to fibronectin, thereby altering intracellular and extracellular processes in which fibronectin takes part, and we postulate that such an atypical interaction could change the architecture of the ECM of affected tissues in patients harboring mutations in genes encoding fibrillar collagens.  相似文献   

16.
Jinguji Y 《Zoological science》2003,20(11):1359-1366
Organizational relationships between endothelial stress fibers and fibronectin fibrils in the developing chick abdominal aorta, from 5th day embryos to 3rd day young chicks, were studied with immunofluorescence and electron microscopy. Stress fibers, axially aligned parallel to the longitudinal cell axis, were expressed in the largely elongated endothelial cells, in embryos older than 8th day of incubation. Fibronectin fibrils in the aortic basal lamina, changed its organizational pattern from the network-like form to the straight bundles arranged parallel to the vessel's longitudinal axis after 9th day of incubation. Such axial alignment was dominant in the matrix beneath the elongated cells containing stress fibers, suggesting the existence of stress fibers may possibly modify the fibronectin's organizational pattern. The vinculin-containing dense plaque, which shaped like as the adhesion plaque in the cultured cells, was located at the ends of or lateral associating sites of stress fibers in embryos older than 8th day stage. The expression of stress fibers, as well as the formation of stress fiber's end plaques, may closely relate to the alignment between the stress fiber and fibronectin fibrils in the extracellular matrix.  相似文献   

17.
Summary Fibroblasts from rat, mouse and chick embryos cultured on poly-lysine/fibronectin- or poly-lysine/laminin-coated dishes were stained with antibodies directed to extracellular matrix molecules. The staining showed that cells had migrated during culture and deposited extracellular matrix components along their migration trails. Depending on the antigen, the staining of the matrix revealed fibrils, spots or a diffuse smear along the migration pathways. The major matrix components were fibronectin and heparan sulfate proteoglycan; however, laminin nidogen, tenascin, glia-derived nexin (GDN) and chondroitin-4-sulfate proteoglycan were also found. The migration trails were also detectable by scanning electron microscopy. Here, the fibrils were the prominent structures. The deposition of matrix was independent from the substratum: fibronectin was deposited on laminin, plain poly-lysine, basal lamina and even on fibronectin. Functional assays using anti-fibronectin or an antiserum to embryonic pigment epithelium basement membrane disturbed the formation of matrix fibrils, but did not inhibit cell attachment and translocation. Likewise, heparin in the culture medium only partially inhibited cell migration, despite the fact that it disturbed the formation of proper matrix fibrils. Our results suggest that the deposition of extracellular matrix by cells may not be mandatory for attachment and translocation. However, the deposition of matrix along defined trails might be important for the pathfinding of cells or nerve fibers that appear later in development.  相似文献   

18.
Fibronectin and laminin production by human keratinocytes cultured in serum-free, low-calcium medium without a fibroblast feeder layer were examined by several techniques. By indirect immunofluorescence, fibronectin but not laminin appeared as short radial fibrils between the cells and the substratum, and in the pericellular matrix. Synthesis of fibronectin and laminin by 7-day keratinocyte cultures was determined by 18 hr 35S-methionine metabolic labeling followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Fibronectin accounted for 2.9% of total synthesized protein, 26.5% of fluid phase protein secretion, and 4.3% of deposited ECM protein. In contrast, only 0.1% of the total synthesized protein was laminin, little (6.3%) of this product was secreted, and none of this product was deposited in the ECM. Our results indicate that human keratinocytes under culture conditions that prevent terminal differentiation in vitro can synthesize, secrete, and deposit fibronectin in the extracellular matrix. Although these cells synthesize laminin, they secrete very little and deposit no detectable laminin in the matrix under these culture conditions. From these data we believe that fibronectin may play an important role in the interaction of epidermal cells with connective tissue matrix during wound healing or morphogenesis in in vivo situations in which the epidermis is not terminally differentiated.  相似文献   

19.
We studied the extracellular localization of factor VIII-related antigen (VIIIR: Ag) in cultures of human endothelial cells. The cells deposited both VIIIR: Ag and fibronectin already during their initial adhesion phase and in immunofluorescence microscopy of spread cells extracellular VIIIR: Ag was localized to fibrils coaligning with pericellular fibronectin. When human fibroblasts, which do not synthesize VIIIR: Ag, were cultured in endothelial cell post-culture medium, a fibrillar matrix localization of VIIIR: Ag was seen, comparable to that of endothelial cell cultures. A fibrillar VIIIR: Ag-specific staining was also seen in cell-free pericellular matrices of endothelial cells, produced by deoxycholate treatment. In immunoelectron microscopy, VIIIR: Ag was seen in fibrillar extracellular material between and underneath the cells and in cell-free matrices of endothelial cells as well.In immunofluorescence microscopy of cell-free matrices, VIIIR: Ag codistributed with both fibronectin and type III procollagen. Digestion of the matrices with purified bacterial collagenase abolished the type III procollagen-specific fluorescence, whereas the fibrillar VIIIR: Ag-specific staining, codistributing with fibronectin, remained unaffected. In electrophoresis of isolated, metabolically labelled endothelial cell matrices, major polypeptides with Mr 220–240; 180; 160; 80 and 45 kD and some minor polypeptides were resolved. In addition, immunoblotting revealed fibronectin, VIIIR: Ag and type III procollagen as components of cell-free matrices of endothelial cells. Direct overlay of iodinated cellular fibronectin on electrophoretically separated polypeptides of cultured endothelial cells, transferred to nitrocellulose, suggested that fibronectin binds directly to VIIIR: Ag. Our results indicate that VIIIR: Ag produced by human endothelial cells is a component of the pericellular matrix and is not bound to collagen but may directly associate with fibronectin.  相似文献   

20.
Cellular transglutaminase has affinity for extracellular matrix   总被引:4,自引:0,他引:4  
Summary Cellular transglutaminase (TGase) was demonstrated as an intracellular enzyme by immunofluorescence in WI-38 cells. Following cell membrane perturbation by Triton X-100 treatment, TGase was bound to the extracellular matrix and was found to coexist with fibronectin as visualized by immunofluorescence microscopy. The binding of TGase to the cell matrix was blocked by anti-fibronectin antibody. Exogenous sources of soluble TGase were transferred to the extracellular matrix of an untreated or methanol fixed cell. The experimental data indicated that “particulate bound” TGase is a consequence of soluble TGase binding to the extracellular matrix following cell rupture. Editor's statement This report suggest that “particulate bound” transglutaminase may be a consequence of affinity of soluble enzyme for specific molecules in extracellular matrix and opens up a means to characterize transglutaminase binding sites in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号