首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Adipose tissue is an easily accessible and abundant source of stem cells. Adipose stem cells (ASCs) are currently being researched as treatment options for repair and regeneration of damaged tissues. The standard culture conditions used for expansion of ASCs contain fetal bovine serum (FBS) which is undefined, could transmit known and unknown adventitious agents, and may cause adverse immune reactions. We have described a novel culture condition which excludes the use of FBS and characterised the resulting culture. Human ASCs were cultured in the novel culture medium, which included complement protein C3. These cultures, called C-ASCs, were compared with ASCs cultured in medium supplemented with FBS. Analysis of ASCs for surface marker profile, proliferation characteristics and differentiation potential indicated that the C-ASCs were similar to ASCs cultured in medium containing FBS. Using a specific inhibitor, we show that C3 is required for the survival of C-ASCs. This novel composition lends itself to being developed into a defined condition for the routine culture of ASCs for basic and clinical applications.  相似文献   

2.
Culture of mesenchymal stem cells (MSCs) under conditions promoting proliferation and differentiation, while supporting genomic and epigenetic stability, is essential for therapeutic use. We report here the extent of genome-wide DNA gains and losses and of DNA methylation instability on 170 cancer-related promoters in bone marrow (BM) MSCs during culture to late passage in medium containing fetal bovine serum (FBS) or autologous serum (AS). Comparative genomic hybridization indicates that expansion of BMMSCs elicits primarily telomeric deletions in a subpopulation of cells, the extent of which varies between donors. However, late passage cultures in AS consistently display normal DNA copy numbers. Combined bisulfite restriction analysis and bisulfite sequencing show that although DNA methylation states are overall stable in culture, AS exhibits stronger propensity than FBS to maintain unmethylated states. Comparison of DNA methylation in BMMSCs with freshly isolated and cultured adipose stem cells (ASCs) also reveals that most genes unmethylated in both BMMSCs and ASCs in early passage are also unmethylated in uncultured ASCs. We conclude that (i) BMMSCs expanded in AS or FBS may display localized genetic alterations, (ii) AS tends to generate more consistent genomic backgrounds and DNA methylation patterns, and (iii) the unmethylated state of uncultured MSCs is more likely to be maintained in culture than the methylated state.  相似文献   

3.
Recently human adipose-derived stem cells (ASCs) have shown much therapeutic potential in regenerative medicine. However, fetal bovine serum (FBS) used in culturing human cells may give risk to viral and prion transmission as well as immune rejection. Human serum (HS) is a safer growth supplement in human cell culture but its effects have not been well established. Therefore the objectives of this study were to compare the effects of HS versus FBS on the proliferation and stemness gene expression of ASCs. ASCs were cultured for 5 passages in medium supplemented with either 10% HS or 10% FBS. ASCs proliferation rate and viability were determined at every passage. Total RNA was extracted at passage 5 (P5) and quantitative PCR was carried out to determine the stemness gene expression level of SOX-2, Nanog3, BST-1, REX-1, ABCG2 and FGF-4. The results showed ASC cultured in 10% HS scored greater proliferation rates and viability compared to 10% FBS. ASCs proliferated significantly faster in 10% HS compared to 10% FBS at P2, P3, and P4 (p < 0.05). In quantitative gene expression analysis, ASCs cultured in 10% FBS showed a significant increase of BST-1, REX-1 and ABCG2 expression compared to 10% HS. In conclusion, HS promotes ASCs proliferation and viability but its ability to support the stemness property of ASCs was inferior to FBS.  相似文献   

4.

Background

The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.

Methodology/Principal Findings

Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.

Conclusion/Significance

Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications relating to establishment, expansion and differentiation of various stem cell types.  相似文献   

5.
With the goal of obtaining clinically safe human adipose-derived stroma/stem cells (ASC) and eliminating the use of serum, we have developed a new culture system that allows the expansion of ASC as spheres in a defined medium. These spheres can be passaged several times. They are not only aggregated cells but rather originate from single cells as clonal spheres can be obtained after seeding at very low density and reform clonal spheres after dissociation. These spheres can also revert to monolayer growth when plated in medium containing human plasma and even generate fibroblast-like colonies (CFU-f). Under several differentiation-specific media, spheres-derived ASC maintain their capacity to differentiate into osteoblasts, endothelial cells and adipocytes. These results indicate that human ASC can be maintained in a serum-free 3D culture system, which is of great interest for the expansion in bioreactors of autologous ASC and their use in clinical trials.  相似文献   

6.
Adult stem cells have been proposed as an alternative to embryonic stem cells to study multilineage differentiation in vitro and to use in therapy. Current culture media for isolation and expansion of adult stem cells require the use of large amounts of animal sera, but animal-derived culture reagents give rise to some questions due to the real possibility of infections and severe immune reactions. For these reasons a clinical grade substitute to animal sera is needed. We tested the isolation, proliferation, morphology, stemness related marker expression, and osteoblastic differentiation potential of Dental Pulp Stem Cells (DPSC) in a chemically defined medium containing a low percentage of human serum, 1.25%, in comparison to a medium containing 10% Fetal Bovine Serum (FBS). DPSCs cultured in presence of our isolation/proliferation medium added with low HS percentage were obtained without immune-selection methods and showed high uniformity in the expression of stem cell markers, proliferated at higher rate, and demonstrated comparable osteoblastic potential with respect to DPSCs cultured in 10% FBS. In this study we demonstrated that a chemically defined medium added with low HS percentage, derived from autologous and heterologous sources, could be a valid substitute to FBS-containing media and should be helpful for adult stem cells clinical application.  相似文献   

7.
Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically, transmission of pathogens and antibody development against FBS are possible. In this study, we investigated whether FBS can be substituted by human platelet lysate (PL) in ASC culture, without affecting functional capacities particularly important for cardiac repair application of ASC. We found that PL-cultured ASC had a significant 3-fold increased proliferation rate and a significantly higher attachment to tissue culture plastic as well as to endothelial cells compared with FBS-cultured ASC. PL-cultured ASC remained a significant 25% smaller than FBS-cultured ASC. Both showed a comparable surface marker profile, with the exception of significantly higher levels of CD73, CD90, and CD166 on PL-cultured ASC. PL-cultured ASC showed a significantly higher migration rate compared with FBS-cultured ASC in a transwell assay. Finally, FBS- and PL-cultured ASC had a similar high capacity to differentiate towards cardiomyocytes. In conclusion, this study showed that culturing ASC is more favorable in PL-supplemented medium compared with FBS-supplemented medium.  相似文献   

8.
The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.  相似文献   

9.
Background aimsBecause of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM) supplemented with either pooled human platelet lysate (pHPL) or clinical-grade fetal bovine serum (FBS) (DMEMpHPL versus DMEMFBS).MethodsASCs from four healthy donors were cultured in either DMEMpHPL or DMEMFBS, and the population doubling time (PDT) was calculated. ASCs from two of the donors were expanded in DMEMpHPL or DMEMFBS and cultured for the final week before harvesting with or without the addition of vascular endothelial growth factor. We assessed the chromosomal stability (through the use of array comparative genomic hybridization), the expression of ASC and endothelial surface markers and the differentiation and angiogenic potential of these cells.ResultsThe ASCs that were cultured in pHPL exhibited a significantly shorter PDT of 29.6 h (95% confidence interval, 22.3–41.9 h) compared with those cultured in FBS, for which the PDT was 123.9 h (95% confidence interval, 95.6–176.2 h). Comparative genomic hybridization analyses revealed no chromosomal aberrations. Cell differentiation, capillary structure formation and cell-surface marker expression were generally unaffected by the type of medium supplement that was used or by the addition of vascular endothelial growth factor.ConclusionsWe observed that the use of pHPL as a growth supplement for ASCs facilitated a significantly higher proliferation rate compared with FBS without compromising genomic stability or differentiation capacity.  相似文献   

10.
In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10 %) on expansion and adipogenic differentiation of adipose-derived stem cells using 10 % fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10 % autologous serum >10 % fetal bovine serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10 % fetal bovine serum >10 % autologous serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. Ten percent autologous serum and 10 % fetal bovine serum had greater differentiation capacity than 1 and 2 % autologous serum in vivo, and no significant difference was observed between the groups at ≥5 % concentration at 14 weeks. In conclusion, 10 % autologous serum was at least as effective as 10 % fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2 % autologous serum was inferior.  相似文献   

11.
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.  相似文献   

12.
Recently, extracted teeth have been identified as a viable source of stem cells for tissue regenerative approaches. Current expansion of these cells requires incorporation of animal sera; yet, a fundamental issue underlying cell cultivation methods for cell therapy regards concerns in using animal sera. In this study, we investigated the development of a chemically defined, serum‐free media (K‐M) for the expansion of human periodontal ligament stem cells (PDLSCs) and human stem cells from exfoliated deciduous teeth (SHEDs). Proliferation assays were performed comparing cells in serum‐containing media (FBS‐M) with cells cultured in four different serum‐free medium and these demonstrated that in these medium, the cell proliferation of both cell types was significantly less than the proliferation of cells in FBS‐M. Additional proliferation assays were performed using pre‐coated fibronectin (FN) tissue culture plates and of the four serum‐free medium, only K‐M enabled PDLSCs and SHEDs to proliferate at higher rates than cells cultured in FBS‐M. Next, alkaline phosphatase activity showed that PDLSCs and SHEDs exhibited similar osteogenic potential whether cultured in K‐M or FBS‐M, and, additionally, cells retained their multipotency in K‐M as seen by expression of chondrogenic and adipogenic genes, and positive Von Kossa, Alcian blue, and Oil Red O staining. Finally, differential expression of 84 stem cell associated genes revealed that for most genes, PDLSCs and SHEDs did not differ in their expression regardless of whether cultured in K‐M or FBS‐M. Taken together, the data suggest that K‐M can support the expansion of PDLSCs and SHEDs and maintenance of their multipotency. J. Cell. Physiol. 226: 66–73, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Jin  Lianhua  Lu  Na  Zhang  Wenxin  Zhou  Yan 《Cytotechnology》2021,73(4):657-667

Adipose-derived stromal cells (ASCs) are now recognized as an accessible, abundant, and reliable stem cells for tissue engineering and regenerative medicine. However, ASCs should be expanded long term in order to harvest higher cell number for clinical application. In this study, ASCs isolated from human subcutaneous adipose tissue and senescence after long-term expansion was evaluated. The results showed that following in vitro expansion to the 15th passage, ASCs show changes in morphology (toward the “fried egg” morphology) and decrease in proliferation potential. Nonetheless, ASCs maintained differentiation potential toward osteoblasts, chondrocytes, and adipocytes. The senescent ASCs show impaired migration capacity under the same basal conditions. OXPHOS and glycolysis decreased slightly in culture from passage 5 to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture. Expression of senescence markers p53, p16, and p21 were also increased accompanied with the increase of passages. Experiment data showed that ASCs biological characteristics depended and changed with age. We recommend the use of early-passage cells, particularly those before passage 5, for efficacious therapeutic application of stem cells.

  相似文献   

14.
Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.  相似文献   

15.
In spite of the advances in the knowledge of adipose‐derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix‐supported three‐dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and α‐smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31?/CD34?/CD146+/SMA+ interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix‐supported 3D environment can recapitulate the ASC niche in vitro. J. Cell. Physiol. 224: 807–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.  相似文献   

19.

Background  

Potential therapeutic use of mesenchymal stem cells (MSCs) is likely to require large-scale in vitro expansion of the cells before transplantation. MSCs from adipose tissue can be cultured extensively until senescence. However, little is known on the differentiation potential of adipose stem cells (ASCs) upon extended culture and on associated epigenetic alterations. We examined the adipogenic differentiation potential of clones of human ASCs in early passage culture and upon senescence, and determined whether senescence was associated with changes in adipogenic promoter DNA methylation.  相似文献   

20.
BACKGROUND: Retrovirus-mediated gene transfer is a useful technology in studying the biology of hematopoietic stem cells (HSCs) as well as in developing gene therapy products for a variety of human diseases. One of the most important factors determining the success of these studies is the number of HSCs receiving the gene of interest. METHODS: We tested various parameters for their influences on gene transfer efficiency to CD34+ cells derived from bone marrow. Based on a literature survey, three medium formulations of CD34+ cells have been compared for their effects on gene delivery efficiency and differentiation of them. We also tested whether FBS, used in the medium formulation, could be replaced with human serum or synthetic material. RESULTS: Formulation A, consisting of stem cell factor, Flt-3 ligand, thrombopoietin, and IL-3, provided optimum results in that it maintained the highest percentage of CD34+ cells during the culture as well as produced the highest gene delivery efficiency. It was found that the synthetic serum substitute containing bovine serum albumin, insulin and human transferrin could replace the fetal bovine serum present in the original formulation A without compromising gene transfer efficiency. When the transduction procedure was repeated three times, the gene could be delivered in up to 60% of the cell population. Gene delivery efficiency was comparable between CD34+ cells derived from bone marrow and mobilized peripheral blood. CONCLUSIONS: Our data could be useful in designing a procedure for stem cell gene therapy and providing a basis for further improving the conditions for gene transfer to various HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号