首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Plants resistant to Helminthosporium maydis race T were obtained following selection for H. maydis pathotoxin resistance in tissue cultures of susceptible, Texas male-sterile (T) cytoplasm maize. The selected lines transmitted H. maydis resistance to their sexual progeny as an extranuclear trait. Of 167 resistant, regenerated plants, 97 were male fertile and 70 were classified male sterile for reasons that included abnormal plant, tassel, anther or pollen development. No progeny were obtained from these male-sterile, resistant plants. Male fertility and resistance to the Phyllosticta maydis pathotoxin that specifically affects T cytoplasm maize were co-transmitted with H. maydis resistance to progeny of male-fertile, resistant plants. These three traits previously were associated only with the normal (N) male-fertile cytoplasm condition in maize. Three generations of progeny testing provided no indication that the cytoplasmic association of male sterility and toxin susceptibility had been broken by this selection and regeneration procedure. Restriction endonuclease analysis of mitochondrial DNA (mtDNA) revealed that three selected, resistant lines had distinct mtDNA organization that distinguished them from each other, from T and from N cytoplasm maize. Restriction patterns of the selected resistant lines were similar to those from T cytoplasm mtDNA; these patterns had not been observed in any previous analyses of various sources of T cytoplasm. The mtDNA analyses indicated that the male-fertile, toxin-resistant lines did not originate from selection of N mitochondrial genomes coexisting previously with T genomes in the T cytoplasm line used for selection.Scientific Journal Series Article no. 11,185 of the Minnesota Agricultural Experiment Station and no. 2295 of the Florida Agricultural Experiment Station. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee of warrantly of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

2.
Summary Plants have been regenerated from short-and long-term in vitro somatic tissue cultures made from immature embryos of the hexaploid wheat cultivar Chinese Spring. The mitochondrial genome organization of each regenerated plantlet was studied, after one selfing, by probing Sal I-restricted total DNA with cloned Sal I fragments of wheat mitochondrial DNA derived from a segment of the genome, which displays marked structural changes in response to in vitro culture. Short-term in vitro cultures give rise to regenerated plants whose mitochondrial genome organization is either close to that of the parental cultivar or to that of embryogenic callus cultures, except for a single plant which has an organization resembling that of short-term non-embryogenic cultures. In contrast, all but one of the plants regenerated from long-term cultures exhibited a mitochondrial genome organization similar to that of long-term nonembryogenic cultures. In addition, extra labelled bands were detected in some of the regenerated plants with two of the probes used. These results emphasize the importance of the duration of the in vitro step preceding the regeneration process: the longer it is, the higher the probability is of obtaining mitochondrial DNA variability in regenerated plants. Furthermore, since increasing the duration of the in vitro stetp results in the production of regenerated plants with a mitochondrial genome organization resembling that of non-embryogenic tissue cultures, the question is thus raised as to whether regeneration from long-term cultures is suitable for use in plant breeding.  相似文献   

3.
Summary An investigation into the possible application of UV radiation as a pretreatment for the donor cells in asymmetric plant cell hybridization protocols has been carried out. A comparison was made between the effects of UV doses in the range 700–4200 J/m2 and those of 60Co gamma radiation over the range 0.15–1 kGy on Beta vulgaris suspension cell protoplasts. The investigation had two aspects. Firstly, alterations to cell physiology (cell wall resynthesis, viability, division and colony formation) in irradiated protoplasts were examined during a 4-week culture period. Results have indicated that a dose of 700 J/m2 UV is necessary to prevent further cell division and colony formation in these cells. A dose of 0.15 kGy gamma radiation generally prevented colony formation, although some early cell division did occur (as was also observed even after 0.45 kGy had been applied). Membrane integrity, as measured after 6 days, using fluorescein diacetate staining, was not affected by either treatment within the dose ranges applied. Secondly, denaturing (alkaline) gel electrophoresis, in association with a pulsed field gel DNA preparation technique, was used to determine the degree of in vivo DNA damage following the radiation treatments. After UV radiation, considerable fragmentation of the DNA was observed, the extent of which was dose-dependent. Gamma radiation, however, appeared to result in fewer DNA lesions, with only the 1 kGy treatment revealing a pattern significantly altered from that of the control. These results augur well for the potential use of UV radiation in asymmetric fusion experiments.  相似文献   

4.
As part of an investigation into whether it would be possible to use UV radiation as a suitable pretreatment of the donor cells in asymmetric hybridization experiments, the effects of this treatment on sugarbeet (Beta vulgaris L.) protoplast DNA have been determined and compared with those of gamma radiation. Both nuclear and mitochondrial DNAs have been examined. The dose ranges chosen had previously been determined to be potentially applicable for fusion experiments. Pulsed field gel electrophoresis and standard agarose gel electrophoresis have been used in combination with laser scanning densitometry to gain an insight into the precise nature and degree of DNA damage resulting from irradiation. It was observed that UV radiation introduced substantial modifications to sugarbeet DNA. Double-strand breaks were detected, the number of which was found to be directly proportional to the dose applied. Such breaks indicate that UV radiation results in substantial chromosome/chromatid fragmentation in these cells. Chemical modifications to the DNA structure could be revealed by a significant reduction in DNA hybridization to specific mitochondrial and nuclear DNA probes. Following gamma irradiation at equivalent biological doses (i.e. those just sufficient to prevent colony formation) much less damage was detected. Fewer DNA fragments were produced indicating the presence of fewer double-strand breaks in the DNA structure. In comparison to UV treatments, DNA hybridization to specific probes following gamma radiation was inhibited less. For both treatments, mitochondrial DNA appeared more sensitive to damage than nuclear DNA. The possibility that DNA repair processes might account for these differences has also been investigated. Results indicate either that repair processes are not involved in the effects observed or that DNA repair occurs so fast that it was not possible to demonstrate such involvement with the experimental system used. The general relevance of such processes to asymmetric cell hybridization is discussed.  相似文献   

5.
A genomic DNA fragment from wheat carrying the Glu-1Dx5 gene has been shown to exhibit reduced pollen transmission in transgenic maize. To localize the region of the DNA fragment responsible for this reduced pollen transmission, we produced transgenic maize plants in which the wheat genomic DNA proximal to the 1Dx5 coding sequence was replaced with the maize 27 kDa gamma-zein promoter. Like the wheat promoter-driven Glu-1Dx5 transgene, this zein promoter-driven transgene functioned to produce 1Dx5 in maize endosperm. However, with the zein promoter-driven transgene, pollen transmission of the transgene loci was normal in most self- and cross-pollinations. We concluded that the wheat genomic DNA proximal to the wheat 1Dx5 coding sequence was required for reduced pollen transmission of the transgene in maize. In two of four transformation events of the wheat promoter-driven construct examined, pollen exhibited two morphological classes. In one class, pollen was normal in morphology and displayed average viability, and in the second, pollen was reduced in size and did not germinate on artificial media. DNA from the transgene was detectable in mature pollen from plants with reduced pollen transmission of transgene loci. To explain these observations, we hypothesize that elements within the transgene construct interfere with pollen development. We demonstrated that the wheat genomic DNA fragment can be used to control pollen transmission of an herbicide resistance transgene genetically linked to it. The wheat genomic DNA fragment may contain elements that are useful for controlling pollen transmission of transgene loci in commercial maize grain and seed production.  相似文献   

6.
Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.  相似文献   

7.
植物体细胞不对称杂交研究进展   总被引:2,自引:0,他引:2  
介绍了近代的植物体细胞杂交研究发展历程,进一步综述了近年来植物不对称体细胞杂交和植物配子一体细胞杂交方面的研究进展以及存在的困难。  相似文献   

8.
Since its first development some 40 years ago, the application of the somatic hybridization technique has generated a body of hybrid plant material involving a wide combination of parental species. Until the late 1990s, the technique was ineffective in wheat, as regeneration from protoplasts was proving difficult to achieve. Since this time, however, a successful somatic hybridization protocol for wheat has been established and used to generate a substantial number of both symmetric and asymmetric somatic hybrids and derived materials, especially involving the parental combination bread wheat and tall wheatgrass (Thinopyrum ponticum). This review describes the current state of the art for somatic hybridization in wheat and focuses on its potential application for wheat improvement.  相似文献   

9.
Rye (Secale cereale L.) is a species that has shown high rates of somaclonal variation when plants obtained by in vitro culture were analysed using different techniques. In this study, using methylation-sensitive amplified polymorphism (MSAP) markers, we analysed the cytosine methylation status at genomic level of regenerated plants of rye that were obtained by somatic embryogenesis. Such plants were originated from three different cell lines and the results were compared with the data obtained from the control plants grown from seeds of the same cultivar and lot. A similar total number of MSAP markers was observed in the regenerated (937) and control plants (1,022), while the mean number detected per plant was significantly higher in regenerated (554.43) than in control plants (356.00). The analysis indicated conservation of the number of partially-methylated CCGG/GGCC sites for all type of plants. However the mean number of non-methylated sites was near twofold in the regenerated plants (442.48) than in control plants (248.19). Methylation changes have been detected in all the regenerated plants when compared within cell lines, with an average frequency of 9.01 % of the detected markers. We also observed that regenerated plants from one or several cell lines shared methylation changes at the same locus pointing to a non-random behaviour of the changes in genomic methylation.  相似文献   

10.
Wheathaploidcanbeproducedbyembryorescueafterwheatandmaizecrosssincethemaizechromosomesarerapidlyeliminatedfromtheearlyzygoticembryos[1,2].Usually2%—5%ofwheatdoubledhaploidshowsagronomicvariations,butnoobviousmorphologicaltraitfrommaizeisobserved.Theywereco…  相似文献   

11.
Summary A cytological study has been made of plants regenerated from cultured immature embryos of four wheat cultivars (Triticum aestivum, 2n = 6x = 42). In total, 29% of the 192 plants examined were aneuploid with a range in chromosome numbers of 38–45. Evidence of chromosome structural changes was also found. This variation occurred in regenerants of all four cultivars, but there were large differences in the proportions of aneuploids arising from individual cultures which meant that no significant differences could be demonstrated between cultivars. Chromosome abnormalities were present in plants regenerated both from embryogenic cultures and from cultures in which the origin of shoots could not be distinctly defined.  相似文献   

12.
普通小麦与玉米不对称体细胞杂交的研究   总被引:1,自引:0,他引:1  
陈凡国  张学勇等 《西北植物学报》2001,21(5):826-831,T001
以长期继代培养,经分化实验证明无分化能力的普通小麦(Triticum aestivum L.)济南177原生质体为受体,以经380uW/cm^2紫外线处理的继代第3-5天的墨西哥黑甜玉米(Zea mays L.cv.Sccharina F.Nigera)胚性悬浮组织原生质体为供体,使用PEG的方法诱导融合。融合再生的18个单细胞克隆的愈伤组织经形态学比较、染色体检查、同工酶分析、5S rRNA间隔序列分析,确认克隆1为杂种愈伤组织,杂种愈伤组织再生出来的白化苗未进行杂种鉴定。同时,初步探讨了紫外线对玉米原生质体的影响。  相似文献   

13.
Summary Protoplast-derived, transformed maize plants were evaluated by Southern analysis for the presence of the aph IV gene which codes for resistance to the antibiotic, hygromycin B. This gene was used as a selectable marker for the transformation of maize protoplasts. Southern analysis was performed with fluorescein-labeled probe DNA. A new method for labeling molecular weight markers with fluorescein-N6 is presented. The nonradioactive Southern analysis method is compared to the radioactive method and the results show that the nonradioactive method is as sensitive as the radioactive method.  相似文献   

14.
In situ hybridization with total genomic DNA (GISH) has become a powerful tool in characterization of alien introgressions in wheat. With recent simplification it can now be used in large scale screening for new chromosome constructs. Its level of resolution in routine applications was tested on sets of recombined wheat-rye chromosomes with genetically determined positions of the translocation breakpoints. The resolution level of GISH visualized by an enzymatic color reaction was much lower than that of GISH with fluorescent probes but both techniques failed to reveal the presence of some distally located breakpoints. The limits of resolution for the two methods were at least 9.8 and 3.5 cM of the relative genetic lengths of chromosome arms, respectively, in configurations with proximal rye and terminal wheat segments when rye DNA was used as a probe. When wheat DNA was used as a probe, a terminal wheat segment estimated to be ca. 1.6 cM in length could not be visualized. An example of induced recombination between a chromosome of Agropyron elongatum and wheat illustrates that these resolution limits of GISH may hamper isolation of critical translocation breakpoints in a chromosome engineering effort.  相似文献   

15.
Summary Haploid and diploid anther-derivedZea mays callus lines were treated with the antimicrotubule herbicide pronamide to produce mixed ploidy callus as determined by flow cytometry. The ploidy levels of the plants regenerated from the callus were determined by counting the leaf epidermal guard cell chloroplast numbers. The proportion of diploid regenerated plants was somewhat lower than the proportion of diploid cells of the callus. The diploid plants regenerated somewhat faster than the haploids. The proportion of tetraploids regenerated from the pronamide treated diploid callus, which originated by spontaneous chromosome doubling, was much lower than the proportion of cells indicating that tetraploid cells survive or regenerate plants at a lower frequency than diploid cells.  相似文献   

16.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

17.
Summary Somatic hybrid plants were regenerated following calcium-high pH fusion of the unidirectional, sexually incompatible cross of Petunia parodii wild-type leaf mesophyll protoplasts with protoplasts from a cytoplasmic determined chlorophyll-deficient mutant of P. inflata. Genic complementation to chlorophyll synthesis and sustained growth in the selective medium was used to visually identify hybrid calluses. Hybrid calluses were subsequently regenerated to shoots, rooted, and confirmed as somatic hybrids by their intermediate floral and leaf morphology based on comparison to the 2 n = 4 x = 28 sexual counterpart, dominant anthocyanin expression in the corolla, chromosome number, and peroxidase and maleic dehydrogenase isozyme patterns. Certain cytologically stable somatic hybrids displayed aberrant reproductive and floral morphologies including subtle to moderate corolla and leaf pigment variegation, floral dimension changes and reduced pollen viability. In contrast, cytologically unstable somatic hybrids showed various degrees of aneuploidy coupled with corolla splitting, and irregularities in reproductive organs such as double stigmas and styles in addition to reduced pollen viability. Postulated mechanisms to account for these phenotypic changes in stable and unstable somatic hybrids include nuclear-cytoplasmic genomic incompatibility, chromosome loss in a biparental cytoplasm, or a phenomenon similar to hybrid dysgenesis occurring as a result of somatic fusion.Michigan Agricultural Experiment Station Journal Article No. 11376. Supported by Grant No. I-134-79 from BARD — The United States — Israel Binational Agricultural Research and Development Fund, and by grant 11-77-4 from American Florists Endowment  相似文献   

18.
细胞质雄性不育是小麦杂种优势利用的重要途径,为了鉴定3例小麦雄性不育系的细胞质类型,对其线粒体DNA(mtDNA)进行扩增片段长度多态性(Amplified fragment length polymorphism,AFLP)分析。文中利用差速离心法和不连续蔗糖密度梯度超速离心法提取纯化小麦线粒体。结果表明:通过该提取方法获得的mtDNA,其质量和纯度能够满足PCR反应和遗传学分析。在64对选扩引物中,筛选到了4对特异性引物,其中引物E1/M7在ms(Kots)-90-110不育系扩增出3条特异条带;引物E4/M2在ms(Ven)-90-110不育系扩增出2条特异条带;引物E7/M6在ms(S)-90-110不育系中扩增出2条特异条带;引物E6/M4在ms(Kots)-90-110不育系中扩增出2条特异条带。这些特异引物可以用来作为鉴定具有粘果山羊草Aegilops kotschyi、偏凸山羊草Ae.ventricosa、斯卑尔脱小麦Triticum spelta 3类不育细胞质型小麦雄性不育系的细胞质分子标记,为研究小麦细胞质雄性不育机理奠定了分子基础。  相似文献   

19.
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.  相似文献   

20.
We hybridized biotinylated probes that anneal at multiple locations throughout the Batrachochytrium dendrobatidis (Bd) genome to selectively capture Bd genomic DNA (gDNA) by binding the probe-gDNA complex to streptavidin coated magnetic beads. We then whole genome amplified the captured gDNA. This method extends the usefulness of field-collected swabs for downstream PCR-based genomic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号